Free vibrations of thin periodic plates interacting with an elastic periodic foundation

被引:20
作者
Jedrysiak, J [1 ]
机构
[1] Tech Univ Lodz, Dept Struct Mech, PL-93590 Lodz, Poland
关键词
periodic plate; length-scale effect; periodic foundation; vibrations;
D O I
10.1016/j.ijmecsci.2003.09.011
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A dynamic behaviour of thin periodic plates interacting with an elastic periodic foundation is analysed. The main aim is to investigate free vibrations and calculate frequencies for these plates. The presented modelling approach to the linear-elastic plates, having periodic structure in planes parallel to the midplane, is adopted from the tolerance averaging method developed by Wozniak and Wierzbicki (Averaging techniques in thermomechanics of Composite Solids, Wydawnictwo Politechniki Czestochowskiej, Czestochowa, 2000) for periodic composites. The obtained plate model describes the effect of the periodicity cell size on the overall plate behaviour. In this paper this effect is analysed in the free vibrations problem. Two special cases are taken into account: a square plate with a periodic thickness interacting with a homogeneous foundation and a square plate with a constant thickness interacting with a periodic foundation. A certain justification of the model is also presented. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1411 / 1428
页数:18
相关论文
共 20 条
[1]   FREE WAVES IN A PLATE SUPPORTED BY A SEMI-INFINITE CONTINUUM [J].
ACHENBACH, JD ;
KESHAVA, SP .
JOURNAL OF APPLIED MECHANICS, 1967, 34 (02) :397-+
[2]  
Ascione L., 1990, Meccanica, V25, P92, DOI 10.1007/BF01566207
[3]  
Caillerie D., 1984, Math. Methods Appl. Sci., V6, P159, DOI DOI 10.1002/mma.1670060112
[4]   A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter [J].
dell'Isola, F ;
Rosa, L ;
Wozniak, C .
ACTA MECHANICA, 1998, 127 (1-4) :165-182
[5]  
Fichera G., 1992, Rend. Circ. Mat. Palermo, V41, P5
[6]  
Hetenyi M., 1946, Beams on Elastic Foundations
[7]   On vibrations of thin plates with one-dimensional periodic structure [J].
Jedrysiak, J .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2000, 38 (18) :2023-2043
[8]   Dynamics of thin periodic plates resting on a periodically inhomogeneous Winkler foundation [J].
Jedrysiak, J .
ARCHIVE OF APPLIED MECHANICS, 1999, 69 (05) :345-356
[9]  
JEDRYSIAK J, 1995, J THEOR APPL MECH, V33, P337
[10]  
JEMIELITA G, 1992, J THEOR APPL MECH, V30, P843