Multiobjective Exponential Particle Swarm Optimization Approach Applied to Hysteresis Parameters Estimation

被引:33
作者
Coelho, Leandro dos S. [2 ,3 ]
Guerra, Fabio A. [2 ,4 ]
Leite, Jean V. [1 ]
机构
[1] Univ Fed Santa Catarina, GRUCAD EEL CTC UFSC, BR-88040970 Florianopolis, SC, Brazil
[2] Pontifical Catholic Univ Parana PUCPR, PPGEPS, BR-80215901 Curitiba, Parana, Brazil
[3] Fed Univ Parana UFPR, Dept Elect Engn, BR-80215901 Curitiba, Parana, Brazil
[4] LACTEC Inst Technol Dev, Electro Elect Dept DPEE, Curitiba, Parana, Brazil
关键词
Electromagnetics; evolutionary computation; optimization; swarm intelligence; JILES-ATHERTON MODEL; VECTOR; DESIGN;
D O I
10.1109/TMAG.2011.2172581
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The term "swarm intelligence" is used to describe algorithms and distributed problem solvers inspired by the collective behavior of insect colonies and other animal societies. Particle swarm optimization (PSO) is a kind of swarm intelligence that is based on the social behavior metaphor. Furthermore, PSO is a stochastic search technique with reduced memory requirement, computationally effective and easier to implement compared to other optimization metaheuristics. Unlike the traditional optimization algorithms, PSO is a derivative-free algorithm and thus it is especially effective in dealing with complex and nonlinear problems in electromagnetic optimization applications. In this paper, a multiobjective PSO approach based on exponential distribution probability operator (MOPSO-E) is proposed and evaluated. Numerical comparisons with results using a multiobjective PSO with external archiving and the proposed MOPSO-E demonstrated that the performance of the MOPSO-E is promising in Jiles-Atherton vector hysteresis model parameter identification. The proposed MOPSO-E to find nondominated solutions that represent the good trade-offs among the objectives in the evaluated case study.
引用
收藏
页码:283 / 286
页数:4
相关论文
共 20 条
[1]   A simple vector generalization of the Jiles-Atherton model of hysteresis [J].
Bergqvist, AJ .
IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (05) :4213-4215
[2]   Grid-Enabled Tabu Search for Electromagnetic Optimization Problems [J].
Carcangiu, Sara ;
Fanni, Alessandra ;
Mereu, Anna ;
Montisci, Augusto .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) :3265-3268
[3]   A General Vector Hysteresis Operator: Extension to the 3-D Case [J].
Cardelli, Ermanno ;
Della Torre, Edward ;
Faba, Antonio .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (12) :3990-4000
[4]   Handling multiple objectives with particle swarm optimization [J].
Coello, CAC ;
Pulido, GT ;
Lechuga, MS .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) :256-279
[5]  
Da Silva Jr P.A., 2007, THESIS FEDERAL U SAN
[6]   Evolutionary Multiobjective Optimization Methods for the Shape Design of Industrial Electromagnetic Devices [J].
Di Barba, Paolo .
IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) :1436-1441
[7]   Improving Loss Properties of the Mayergoyz Vector Hysteresis Model [J].
Dlala, Emad ;
Belahcen, Anouar ;
Fonteyn, Katarzyna Anna ;
Belkasim, Monear .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (03) :918-924
[8]   A simplified model for vector hysteresis computation [J].
Finocchio, G ;
Cardelli, EN ;
Azzerboni, B .
IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (04) :955-958
[9]   THEORY OF FERROMAGNETIC HYSTERESIS [J].
JILES, DC ;
ATHERTON, DL .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1986, 61 (1-2) :48-60
[10]   Multiobjective Optimization for Determination of the Electrothermal Parameters in Switchgear Cell Housing [J].
Kitak, Peter ;
Glotic, Adnan ;
Ticar, Igor ;
Pihler, Joze .
IEEE TRANSACTIONS ON MAGNETICS, 2011, 47 (05) :1302-1305