On the balanced upper chromatic number of cyclic projective planes and projective spaces

被引:2
作者
Araujo-Pardo, Gabriela [1 ]
Kiss, Gyoergy [2 ,3 ]
Montejano, Amanda [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Queretaro, Mexico
[2] Eotvos Lorand Univ, Dept Geometry, H-1117 Budapest, Hungary
[3] Eotvos Lorand Univ, MTA ELTE GAC Res Grp, H-1117 Budapest, Hungary
[4] Univ Nacl Autonoma Mexico, UMDI Fac Ciencias, Queretaro, Mexico
关键词
Balanced rainbow-free colorings; Upper chromatic number; Projective planes; Projective spaces;
D O I
10.1016/j.disc.2015.06.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study vertex colorings of hypergraphs, such that all color sizes differ at most in one (balanced colorings) and each edge contains at least two vertices of the same color (rainbow-free colorings). Given a hypergraph H, the maximum k, such that there is a balanced rainbow-free k-coloring of H is called the balanced upper chromatic number denoted by (chi) over bar (b)(H). Concerning hypergraphs defined by projective spaces, bounds on the balanced upper chromatic number and constructions of rainbow-free colorings are given. For cyclic projective planes of order q we prove that: q(2) + q + 1/6 <= (chi) over bar (b)(Pi(q)) <= q(2) + q + 1/3. We also give bounds for the balanced upper chromatic numbers of the hypergraphs arising from the n-dimensional finite space PG(n, q). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2562 / 2571
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1991, General Galois Geometries
[2]   Null and non-rainbow colorings of projective plane and sphere triangulations [J].
Arocha, Jorge L. ;
Montejano, Amanda .
DISCRETE APPLIED MATHEMATICS, 2016, 210 :195-199
[3]  
Axenovich M, 2004, ELECTRON J COMB, V11
[4]  
Bacs G., 2007, J. Comb. Des, V7, P39
[5]   The 2-Blocking Number and the Upper Chromatic Number of PG(2,q) [J].
Bacso, Gabor ;
Heger, Tamas ;
Szonyi, Tamas .
JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (12) :585-602
[6]  
Erdos P., 1975, Colloq. Math. Soc. Janos Bolyai, V10, P633
[7]   Rainbow Generalizations of Ramsey Theory: A Survey [J].
Fujita, Shinya ;
Magnant, Colton ;
Ozeki, Kenta .
GRAPHS AND COMBINATORICS, 2010, 26 (01) :1-30
[8]  
Hirschfeld J.W.P, 1998, PROJECTIVE GEOMETRIE
[9]   Colorings of plane graphs with no rainbow faces [J].
Jungic, Veselin ;
Kral, Daniel ;
Skrekovski, Riste .
COMBINATORICA, 2006, 26 (02) :169-182
[10]  
Jungic Veselin, 2005, INTEGERS, V5, pA9