Non-realizability of the Torelli group as area-preserving homeomorphisms

被引:2
作者
Chen, Lei [1 ]
Markovic, Vladimir [1 ]
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2020年 / 102卷 / 03期
关键词
37E10; 37E30; 37E40 (primary); ROTATION NUMBERS; BRAID-GROUPS; REALIZATION; INSTABILITY; SET;
D O I
10.1112/jlms.12340
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nielsen realization problem for the mapping class groupMod(Sg)asks whether the natural projectionpg:Homeo+(Sg)-> Mod(Sg)has a section. While all the previous results use torsion elements in an essential way, in this paper, we focus on the much more difficult problem of realization of torsion-free subgroups ofMod(Sg). The main result of this paper is that the Torelli group has no realization inside the area-preserving homeomorphisms.
引用
收藏
页码:957 / 976
页数:20
相关论文
共 22 条
[1]   Some groups of mapping classes not realized by diffeomorphisms [J].
Bestvina, Mladen ;
Church, Thomas ;
Souto, Juan .
COMMENTARII MATHEMATICI HELVETICI, 2013, 88 (01) :205-220
[2]   On the nonrealizability of braid groups by homeomorphisms [J].
Chen, Lei .
GEOMETRY & TOPOLOGY, 2019, 23 (07) :3735-3749
[3]  
Farb B., 2006, P S PURE MATH, V74, px
[4]  
Farb Benson., 2012, A primer on mapping class groups, V49, P472, DOI DOI 10.1515/9781400839049
[5]   Rotation numbers and instability sets [J].
Franks, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 40 (03) :263-279
[6]   Regions of instability for non-twist maps [J].
Franks, J ;
Le Calvez, P .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 :111-141
[7]  
Franks J., 2007, COMPLETE SEMICONJUGA
[8]   Global fixed points for centralizers and Morita's Theorem [J].
Franks, John ;
Handel, Michael .
GEOMETRY & TOPOLOGY, 2009, 13 :87-98
[9]  
Funar Louis, 2014, J GOKOVA GEOM TOPOL, V8, P14
[10]  
Ghys E., 2001, LENSEIGNEMENT MATHEM, V47, P329