On the definition of entanglement entropy in lattice gauge theories

被引:69
作者
Aoki, Sinya [1 ]
Iritani, Takumi [1 ]
Nozaki, Masahiro [1 ]
Numasawa, Tokiro [1 ]
Shiba, Nobura [1 ]
Tasaki, Hal [2 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 6068502, Japan
[2] Gakushuin Univ, Dept Phys, Toshima Ku, Tokyo 1718588, Japan
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2015年 / 06期
关键词
Lattice Gauge Field Theories; Gauge Symmetry; BLACK-HOLE ENTROPY; TRANSFER-MATRIX; CONFINEMENT;
D O I
10.1007/JHEP06(2015)187
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We focus on the issue of proper definition of entanglement entropy in lattice gauge theories, and examine a naive definition where gauge invariant states are viewed as elements of an extended Hilbert space which contains gauge non-invariant states as well. Working in the extended Hilbert space, we can define entanglement entropy associated with an arbitrary subset of links, not only for abelian but also for non-abelian theories. We then derive the associated replica formula. We also discuss the issue of gauge invariance of the entanglement entropy. In the Z(N) gauge theories in arbitrary space dimensions, we show that all the standard properties of the entanglement entropy, e.g. the strong subadditivity, hold in our definition. We study the entanglement entropy for special states, including the topological states for the Z(N) gauge theories in arbitrary dimensions. We discuss relations of our definition to other proposals.
引用
收藏
页数:29
相关论文
共 51 条
  • [1] [Anonymous], ARXIV09072939
  • [2] [Anonymous], ARXIV12093304
  • [3] Spin networks in Gauge theory
    Baez, JC
    [J]. ADVANCES IN MATHEMATICS, 1996, 117 (02) : 253 - 272
  • [4] Entropic counterpart of perturbative Einstein equation
    Bhattacharya, Jyotirmoy
    Takayanagi, Tadashi
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [5] Numerical study of entanglement entropy in SU(2) lattice gauge theory
    Buividovich, P. V.
    Polikarpov, M. I.
    [J]. NUCLEAR PHYSICS B, 2008, 802 (03) : 458 - 474
  • [6] Entanglement entropy in gauge theories and the holographic principle for electric strings
    Buividovich, P. V.
    Polikarpov, M. I.
    [J]. PHYSICS LETTERS B, 2008, 670 (02) : 141 - 145
  • [7] Carter R. W., 1995, Lectures on Lie Groups and Lie Algebras
  • [8] Remarks on entanglement entropy for gauge fields
    Casini, Horacio
    Huerta, Marina
    Alejandro Rosabal, Jose
    [J]. PHYSICAL REVIEW D, 2014, 89 (08):
  • [9] GAUGE FIXING, TRANSFER-MATRIX, AND CONFINEMENT ON A LATTICE
    CREUTZ, M
    [J]. PHYSICAL REVIEW D, 1977, 15 (04) : 1128 - 1136
  • [10] Entanglement entropy and nonabelian gauge symmetry
    Donnelly, William
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (21)