A new breaking wave height direct estimator from video imagery

被引:49
作者
Almar, Rafael [1 ,5 ]
Cienfuegos, Rodrigo [1 ]
Catalan, Patricio A. [2 ]
Michallet, Herve [3 ]
Castelle, Bruno [4 ]
Bonneton, Philippe [4 ]
Marieu, Vincent [4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Ingn Hidraul & Ambiental, Escuela Ingn, Santiago, Chile
[2] Univ Tecn Feder Santa Maria, Dept Obras Civiles, Valparaiso, Chile
[3] CNRS UJF G INP, UMR LEGI, F-38041 Grenoble, France
[4] Univ Bordeaux 1, CNRS, UMR EPOC, Bordeaux, France
[5] IRD UMR LEGOS, Toulouse, France
关键词
Remote sensing; Wave measurement; Laboratory experiment; Roller; Wave front face angle; Height-to-depth ratio; Coastal management; NEARSHORE BATHYMETRY; MODEL; INVERSION;
D O I
10.1016/j.coastaleng.2011.12.004
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Breaker height is a key parameter of nearshore processes and the demand for a continuous remote estimator is pressing. In this paper we present a standalone remote video-based method that estimates wave height at the breakpoint. Individual breaking events are first identified from changes in optical properties and wave height is further derived from the optical signature at the onset of breaking. An extended validation is performed using a dense wave basin dataset. The results show the ability of the method to measure individual breaker heights (9% of mean error, 18% RMS). In addition, the unique combination of in situ and remotely sensed data allows the estimation of two other breaking-related parameters, the height-to-depth ratio and wave front face slope, which show a substantial amount of dispersion. Because nearshore video systems are rapidly spreading over world coasts, this low-cost remote breaker height estimator should encounter large interest in coastal engineering studies. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:42 / 48
页数:7
相关论文
共 28 条
[1]   Nearshore subtidal bathymetry from time-exposure video images [J].
Aarninkhof, SGJ ;
Ruessink, BG ;
Roelvink, JA .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2005, 110 (C6) :1-13
[2]  
Almar R, 2011, J COASTAL RES, P20
[3]  
Almar R., 2008, INT C COAST ENG, V1, P661
[4]   A third-generation wave model for coastal regions - 1. Model description and validation [J].
Booij, N ;
Ris, RC ;
Holthuijsen, LH .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1999, 104 (C4) :7649-7666
[5]  
Borge JCN, 2004, J ATMOS OCEAN TECH, V21, P1291, DOI 10.1175/1520-0426(2004)021<1291:IOMRIF>2.0.CO
[6]  
2
[7]   Near-shore swell estimation from a global wind-wave model: Spectral process, linear, and artificial neural network models [J].
Browne, Matthew ;
Castelle, Bruno ;
Strauss, Darrell ;
Tomlinson, Rodger ;
Blumenstein, Michael ;
Lane, Chris .
COASTAL ENGINEERING, 2007, 54 (05) :445-460
[8]   Laboratory experiment on rip current circulations over a moveable bed: Drifter measurements [J].
Castelle, B. ;
Michallet, H. ;
Marieu, V. ;
Leckler, F. ;
Dubardier, B. ;
Lambert, A. ;
Berni, C. ;
Bonneton, P. ;
Barthelemy, E. ;
Bouchette, F. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2010, 115
[9]   Remote sensing of breaking wave phase speeds with application to non-linear depth inversions [J].
Catalan, Patricio A. ;
Haller, Merrick C. .
COASTAL ENGINEERING, 2008, 55 (01) :93-111
[10]   Optical and Microwave Detection of Wave Breaking in the Surf Zone [J].
Catalan, Patricio A. ;
Haller, Merrick C. ;
Holman, Robert A. ;
Plant, William J. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :1879-1893