Simultaneously enhanced efficiency of eco-friendly structural characterization of the dithienocyclopentacarbazole donor based acceptors with narrow bandgap for high-performance organic solar cells

被引:31
|
作者
Ans, Muhammad [1 ]
Ayub, Ahtsham [2 ]
Alwadai, Norah [3 ]
Rasool, Alvina [1 ]
Zahid, Muhammad [4 ]
Iqbal, Javed [1 ,5 ]
Al-Buriahi, M. S. [6 ]
机构
[1] Univ Agr Faisalabad, Dept Chem, Faisalabad 38000, Pakistan
[2] Forman Christian Coll, Dept Chem, Ferozepur Rd, Lahore 54600, Pakistan
[3] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Phys, POB 84428, Riyadh 11671, Saudi Arabia
[4] Univ Okara, Dept Biochem, Okara 56300, Pakistan
[5] Univ Agr Faisalabad, Punjab Bioenergy Inst, Faisalabad 38000, Pakistan
[6] Sakarya Univ, Dept Phys, TR-54050 Sakarya, Turkey
关键词
TD-DFT; dithienocyclopentacarbazole (DTCC); organic solar cells (OSCs); reorganization energy; SMALL-MOLECULE ACCEPTORS; EXCITON DISSOCIATION; FULLERENE ACCEPTORS; CONJUGATED POLYMER; DESIGN; ENERGY; INTERFACE; STRATEGY; SOLVENT;
D O I
10.1088/1361-6463/ac53c8
中图分类号
O59 [应用物理学];
学科分类号
摘要
In the present age, researchers are trying to overcome the energy crisis and the global demand for energy by developing organic solar cells (OSCs) of higher efficacy. Herein, we have developed five new acceptor molecules with a dithienocyclopentacarbazole donor unit flanked with different electron-withdrawing end-capped acceptor units, named Z1 ((Z)-2-(2-ethylidene-5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile), Z2 ((Z)-1-(dicyanomethylene)-2-ethylidene-3-oxo-2,3-dihydro-1H-indene-5,6-dicarbonitrile), Z3 ((Z)-2-(5-ethylidene-4-oxo-4,5-dihydro-6H-cyclopenta[b]thiophen-6-ylidene)malononitrile), Z4 ((Z)-2-(5-ethylidene-3-fluoro-4-oxo-4,5-dihydro-6H-cyclopenta[b]thiophen-6-ylidene)malononitrile) and Z5 ((Z)-5-((Z)-5-ethylidene-4-oxo-4,5-dihydro-6H-cyclopenta[b]thiophen-6-ylidene)-3-methyl-2-thioxothiazolidin-4-one) to get greater effectiveness and good activity of OSCs, in order for non-renewable resources to be replaced with cost-effective, better-performing OSCs. B3LYP/6-31G(d,p) was used analytically to explore the maximum absorption wavelength ( lambda ( max )), reorganization energy (RE), frontier molecular orbital, transition density matrix, open circuit voltage ( V ( oc )), density of state, binding energy ( E ( b )) and dipole moment of the newly developed molecules. Amongst all the newly designed (Z1-Z5) molecules, the Z2 molecule showed the lowest energy gap (2.04 eV) between highest occupied molecular orbital and lowest unoccupied molecular orbital, maximum lambda (max) value in the applied phases i.e. gas (680.74 nm) and solvent (737.0 nm) along with the highest dipole moment values in gas (9.85 Debye) and solvent phase (11.0 Debye), lowest values of reorganization energy, and high charge mobilities. In addition, all the newly designed molecules were found to have the potential for better results in contrast to the molecule R (reference molecule).
引用
收藏
页数:19
相关论文
共 36 条
  • [1] High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications
    Wang, Di
    Liu, Haoran
    Li, Yuhao
    Zhou, Guanqing
    Zhan, Lingling
    Zhu, Haiming
    Lu, Xinhui
    Chen, Hongzheng
    Li, Chang-Zhi
    JOULE, 2021, 5 (04) : 945 - 957
  • [2] Narrow bandgap difluorobenzochalcogenadiazole-based polymers for high-performance organic thin-film transistors and polymer solar cells
    Shi, Shengbin
    Liao, Qiaogan
    Wang, Hang
    Xiao, Guomin
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (19) : 8032 - 8043
  • [3] High-performance non-fullerene polymer solar cells based on naphthobistriazole wide bandgap donor copolymers
    Li, Li
    Liu, Gongchu
    Zhang, Jie
    Wang, Zhenfeng
    Jia, Tao
    Hu, Yingyuan
    Cao, Congcong
    Zhang, Kai
    Huang, Fei
    Cao, Yong
    JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (16) : 4709 - 4715
  • [4] The role of connectivity in significant bandgap narrowing for fused-pyrene based non-fullerene acceptors toward high-efficiency organic solar cells
    Liu, Shungang
    Su, Wenyan
    Zou, Xianshao
    Du, Xiaoyan
    Cao, Jiamin
    Wang, Nong
    Shen, Xingxing
    Geng, Xinjian
    Tang, Zilong
    Yartsev, Arkady
    Zhang, Maojie
    Gruber, Wolfgang
    Unruh, Tobias
    Li, Ning
    Yu, Donghong
    Brabec, Christoph J.
    Wang, Ergang
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (12) : 5995 - 6003
  • [5] Toward High-Performance Quinoxaline Based Non-fullerene Small Molecule Acceptors for Organic Solar Cells
    Ayub, Amna
    Ans, Muhammad
    Gul, Sehrish
    Shawky, Ahmed M.
    Ayub, Khurshid
    Iqbal, Javed
    Hashmi, Muhammad Ali
    Lakhani, Ahmed
    ELECTRONIC MATERIALS LETTERS, 2023, 19 (01) : 38 - 54
  • [6] Molecular design of cost-effective donor polymers with high visible transmission for eco-friendly and efficient semitransparent organic solar cells
    Jeon, Sung Jae
    Kim, Ye Chan
    Kim, Ji Youn
    Kim, Ji Hyeon
    Yang, Nam Gyu
    Lee, Yoon Jae
    Lee, Hyoung Seok
    Kim, Young Hoon
    Kim, Gang Wook
    Jang, Eun Mi
    Lee, Byoungkyu
    Yang, Changduk
    Moon, Doo Kyung
    CHEMICAL ENGINEERING JOURNAL, 2023, 472
  • [7] Asymmetric selenophene-based non-fullerene acceptors for high-performance organic solar cells
    Li, Chao
    Xia, Tian
    Song, Jiali
    Fu, Huiting
    Ryu, Hwa Sook
    Weng, Kangkang
    Ye, Linglong
    Woo, Han Young
    Sun, Yanming
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (04) : 1435 - 1441
  • [8] A Wide Bandgap Polymer Donor Composed of Benzodithiophene and Oxime-Substituted Thiophene for High-Performance Organic Solar Cells
    He, Keqiang
    Kumar, Pankaj
    Yuan, Yi
    Zhang, Zhifang
    Li, Xu
    Liu, Haitao
    Wang, Jinliang
    Li, Yuning
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (22) : 26441 - 26450
  • [9] High-Performance Nonfullerene Organic Photovoltaic Cells Using a TPD-Based Wide Bandgap Donor Polymer
    Park, Jong Baek
    Ha, Jong-Woon
    Jung, In Hwan
    Hwane, Do-Hoon
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (08) : 5692 - 5697
  • [10] Tailoring Cyano Substitutions on Quinoxaline-based Small-Molecule Acceptors Enabling Enhanced Molecular Packing for High-Performance Organic Solar Cells
    Chen, Li
    Zhao, Chaoyue
    Yu, Han
    Sergeev, Aleksandr
    Zhu, Liangxiang
    Ding, Kan
    Fu, Yuang
    Ng, Ho Ming
    Kwok, Chung Hang
    Zou, Xinhui
    Yi, Jicheng
    Lu, Xinhui
    Wong, Kam Sing
    Ade, Harald
    Zhang, Guangye
    Yan, He
    ADVANCED ENERGY MATERIALS, 2024, 14 (30)