The Effect of Different Local Search Algorithms on the Performance of Multi-Objective Optimizers

被引:0
|
作者
Pilat, Martin [1 ]
Neruda, Roman [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 11800, Czech Republic
[2] Acad Sci Czech Republ, Inst Comp Sci, Prague 18207, Czech Republic
来源
2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2014年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several contemporary multi-objective surrogate-based algorithms use some kind of local search operator. The search technique used in this operator can largely affect the performance of the multi-objective optimizer as a whole, however, little attention is often paid to the selection of this technique. In this paper, we compare three different local search techniques and evaluate their effect on the performance of two different surrogate based multi-objective optimizers. The algorithms are evaluated using the well known ZDT and WFG benchmark suites and recommendations are made based on the results.
引用
收藏
页码:2172 / 2179
页数:8
相关论文
共 50 条
  • [31] A Local Optimization Framework for Multi-Objective Ergodic Search
    Ren, Zhongqiang
    Srinivasan, Akshaya Kesarimangalam
    Coffin, Howard
    Abraham, Ian
    Choset, Howie
    ROBOTICS: SCIENCE AND SYSTEM XVIII, 2022,
  • [32] Indicator-based multi-objective local search
    Basseur, M.
    Burke, E. K.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 3100 - 3107
  • [33] Hypervolume-based multi-objective local search
    Matthieu Basseur
    Rong-Qiang Zeng
    Jin-Kao Hao
    Neural Computing and Applications, 2012, 21 : 1917 - 1929
  • [34] Queued pareto local search for multi-objective optimization
    Inja, Maarten
    Kooijman, Chiel
    de Waard, Maarten
    Roijers, Diederik M.
    Whiteson, Shimon
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8672 : 589 - 599
  • [35] Distributed Pareto Local Search for Multi-Objective DCOPs
    Clement, Maxime
    Okimoto, Tenda
    Inoue, Katsumi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (12): : 2897 - 2905
  • [36] Queued Pareto Local Search for Multi-Objective Optimization
    Inja, Maarten
    Kooijman, Chiel
    de Waard, Maarten
    Roijers, Diederik M.
    Whiteson, Shimon
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 589 - 599
  • [37] Hypervolume-based multi-objective local search
    Basseur, Matthieu
    Zeng, Rong-Qiang
    Hao, Jin-Kao
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (08): : 1917 - 1929
  • [38] The Gradient Subspace Approximation as Local Search Engine within Evolutionary Multi-objective Optimization Algorithms
    Alvarado, Sergio
    Segura, Carlos
    Schutze, Oliver
    Zapotecas, Saul
    COMPUTACION Y SISTEMAS, 2018, 22 (02): : 363 - 385
  • [39] Evolutionary Multi-objective Optimization of Particle Swarm Optimizers
    Veenhuis, Christian
    Koeppen, Mario
    Vicente-Garcia, Raul
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 2273 - +
  • [40] A Scalability Study of Multi-Objective Particle Swarm Optimizers
    Harrison, Kyle Robert
    Engelbrecht, Andries P.
    Ombuki-Berman, Beatrice M.
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 189 - 197