The Effect of Different Local Search Algorithms on the Performance of Multi-Objective Optimizers

被引:0
|
作者
Pilat, Martin [1 ]
Neruda, Roman [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague 11800, Czech Republic
[2] Acad Sci Czech Republ, Inst Comp Sci, Prague 18207, Czech Republic
来源
2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2014年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several contemporary multi-objective surrogate-based algorithms use some kind of local search operator. The search technique used in this operator can largely affect the performance of the multi-objective optimizer as a whole, however, little attention is often paid to the selection of this technique. In this paper, we compare three different local search techniques and evaluate their effect on the performance of two different surrogate based multi-objective optimizers. The algorithms are evaluated using the well known ZDT and WFG benchmark suites and recommendations are made based on the results.
引用
收藏
页码:2172 / 2179
页数:8
相关论文
共 50 条
  • [1] On Different Stopping Criteria for Multi-objective Harmony Search Algorithms
    Abu Doush, Iyad
    Bataineh, Mohammad Qasem
    El-Abd, Mohammed
    2019 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE (ISMSI 2019), 2019, : 30 - 34
  • [2] Specification of local search directions in genetic local search algorithms for multi-objective optimization problems
    Murata, T
    Ishibuchi, H
    Gen, M
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 441 - 448
  • [3] Automatic Configuration of Multi-Objective Local Search Algorithms for Permutation Problems
    Blot, Aymeric
    Kessaci, Marie-Eleonore
    Jourdan, Laetitia
    Hoos, Holger H.
    EVOLUTIONARY COMPUTATION, 2019, 27 (01) : 147 - 171
  • [4] Pareto Local Search is Competitive with Evolutionary Algorithms for Multi-Objective Neural Architecture Search
    Quan Minh Phan
    Ngoc Hoang Luong
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 348 - 356
  • [5] Pareto local search algorithms for the multi-objective beam angle optimisation problem
    Cabrera-Guerrero, Guillermo
    Mason, Andrew J.
    Raith, Andrea
    Ehrgott, Matthias
    JOURNAL OF HEURISTICS, 2018, 24 (02) : 205 - 238
  • [6] Comparing Multi-Objective Local Search Algorithms for the Beam Angle Selection Problem
    Cabrera-Guerrero, Guillermo
    Lagos, Carolina
    MATHEMATICS, 2022, 10 (01)
  • [7] Multi-Objective Portfolio Optimization and Rebalancing Using Genetic Algorithms with Local Search
    Soam, Vishal
    Palafox, Leon
    Iba, Hitoshi
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [8] On Gradient-Based Local Search to Hybridize Multi-objective Evolutionary Algorithms
    Lara, Adriana
    Schuetze, Oliver
    Coello, Carlos A. Coello
    EVOLVE - A BRIDGE BETWEEN PROBABILITY, SET ORIENTED NUMERICS AND EVOLUTIONARY COMPUTATION, 2013, 447 : 305 - +
  • [9] Adaptive Multi-objective Local Search Algorithms for the Permutation Flowshop Scheduling Problem
    Blot, Aymeric
    Kessaci, Marie-Eleonore
    Jourdan, Laetitia
    De Causmaecker, Patrick
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 12, 2019, 11353 : 241 - 256
  • [10] Pareto local search algorithms for the multi-objective beam angle optimisation problem
    Guillermo Cabrera-Guerrero
    Andrew J. Mason
    Andrea Raith
    Matthias Ehrgott
    Journal of Heuristics, 2018, 24 : 205 - 238