A Numerical Investigation on Configurational Distortions in Nematic Liquid Crystals

被引:5
作者
Pandolfi, Anna [1 ]
Napoli, Gaetano [2 ]
机构
[1] Politecn Milan, Dipartimento Ingn Strutturale, I-20133 Milan, Italy
[2] Univ Salento, Dipartimento Ingn Innovaz, I-73100 Lecce, Italy
关键词
Nematic liquid crystal; Stable configuration; Metastable configuration; Phase transition; Finite elements; FREEDERICKSZ TRANSITION; PHASE; CELLS; BEND; DEFORMATIONS;
D O I
10.1007/s00332-011-9100-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When subjected to magnetic or electric fields, nematic liquid crystals confined between two parallel glass plates and initially uniformly oriented may undergo homogeneous one-dimensional spatial distortions (Fr,edericksz and Zolina, Trans. Faraday Soc. 29:919, 1933) or periodic distortions (Lonberg and Meyer, Phys. Rev. Lett. 55(7):718-721, 1985; and Srajer et al., Phys. Rev. Lett. 67(9):1102-1105, 1991). According to the experimental observations, periodic phases are stable configurations at intermediate intensity of the acting field, while homogeneous phases are stable at higher strengths. We present a fully nonlinear finite element approach able to describe homogeneous and periodic configurational phases in a cell of confined nematic liquid crystal with strong planar anchoring boundary conditions. Stationary configurations are obtained by setting to zero the first variation of the discretized total energy of the system. Unstable configurations are identified by evaluating the behavior of the solution under small numerical perturbations. Numerical calculations are able to describe the evolution of the configurational distortions as a function of the applied field and are able to capture the critical points between homogeneous and periodic phases. The proposed approach has been proved to be an excellent tool to predict the existence of unstable or metastable distortions, characterized by higher energy levels.
引用
收藏
页码:785 / 809
页数:25
相关论文
共 29 条
  • [1] THEORY OF THE STRIPE PHASE IN BEND-FREEDERICKSZ-GEOMETRY NEMATIC FILMS
    ALLENDER, DW
    HORNREICH, RM
    JOHNSON, DL
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (23) : 2654 - 2657
  • [2] Electric field-induced fast nematic order dynamics
    Amoddeo, A.
    Barberi, R.
    Lombardo, G.
    [J]. LIQUID CRYSTALS, 2011, 38 (01) : 93 - 103
  • [3] Ground states of nematic liquid crystals
    Barbero, G.
    Evangelista, L. R.
    [J]. PHYSICS LETTERS A, 2006, 356 (02) : 156 - 159
  • [4] Finite element analysis of the Landau-de Gennes minimization problem for liquid crystals
    Davis, TA
    Gartland, EC
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) : 336 - 362
  • [5] de Gennes P. G., 1993, The Physics of Liquid Crystals, V2nd ed
  • [6] A supernodal approach to sparse partial pivoting
    Demmel, JW
    Eisenstat, SC
    Gilbert, JR
    Li, XYS
    Liu, JWH
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (03) : 720 - 755
  • [7] DEFORMATION OF NEMATIC LIQUID-CRYSTALS IN AN ELECTRIC-FIELD
    DEULING, HJ
    [J]. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1972, 19 (02): : 123 - 131
  • [8] Theoretical and experimental study of nematic liquid crystal display cells using the in-plane-switching mode
    Di Pasquale, F
    Deng, HF
    Fernández, FA
    Day, SE
    Davies, JB
    Johnson, MT
    van der Put, AA
    van de Eerenbeemd, JMA
    van Haaren, JAMM
    Chapman, JA
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (04) : 661 - 668
  • [9] Two-dimensional finite-element modeling of nematic liquid crystal devices for optical communications and displays
    DiPasquale, F
    Fernandez, FA
    Day, SE
    Davies, JB
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1996, 2 (01) : 128 - 134
  • [10] INEQUALITIES IN LIQUID CRYSTAL THEORY
    ERICKSEN, JL
    [J]. PHYSICS OF FLUIDS, 1966, 9 (06) : 1205 - &