A mixed effects least squares support vector machine model for classification of longitudinal data

被引:25
|
作者
Luts, Jan [1 ,2 ]
Molenberghs, Geert [3 ,4 ]
Verbeke, Geert [4 ]
Van Huffel, Sabine [1 ,2 ]
Suykens, Johan A. K. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT, Res Div SCD, B-3001 Louvain, Belgium
[2] IBBT KU Leuven Future Hlth Dept, Louvain, Belgium
[3] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium
[4] Katholieke Univ Leuven, I BioStat, B-3000 Louvain, Belgium
关键词
Classification; Longitudinal data; Least squares; Support vector machine; Kernel method; Mixed model;
D O I
10.1016/j.csda.2011.09.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A mixed effects least squares support vector machine (LS-SVM) classifier is introduced to extend the standard LS-SVM classifier for handling longitudinal data. The mixed effects LS-SVM model contains a random intercept and allows to classify highly unbalanced data, in the sense that there is an unequal number of observations for each case at non-fixed time points. The methodology consists of a regression modeling and a classification step based on the obtained regression estimates. Regression and classification of new cases are performed in a straightforward manner by solving a linear system. It is demonstrated that the methodology can be generalized to deal with multi-class problems and can be extended to incorporate multiple random effects. The technique is illustrated on simulated data sets and real-life problems concerning human growth. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:611 / 628
页数:18
相关论文
共 50 条
  • [41] Algorithm of Sparse Least Squares Support Vector Machine
    Zhang, Yongli
    Zhu, Yanwei
    Lin, Shufei
    Sun, Xiujuan
    Zhang, Qiuna
    Liu, Xiaohong
    SMART MATERIALS AND INTELLIGENT SYSTEMS, PTS 1 AND 2, 2011, 143-144 : 1229 - +
  • [42] A sparse least squares support vector machine classifier
    Valyon, J
    Horváth, G
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 543 - 548
  • [43] Benchmarking least squares support vector machine classifiers
    van Gestel, T
    Suykens, JAK
    Baesens, B
    Viaene, S
    Vanthienen, J
    Dedene, G
    de Moor, B
    Vandewalle, J
    MACHINE LEARNING, 2004, 54 (01) : 5 - 32
  • [44] Ramp loss least squares support vector machine
    Liu, Dalian
    Shi, Yong
    Tian, Yingjie
    Huang, Xiankai
    JOURNAL OF COMPUTATIONAL SCIENCE, 2016, 14 : 61 - 68
  • [45] Mapped least squares support vector machine regression
    Zheng, S
    Sun, YQ
    Tian, JW
    Liu, J
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2005, 19 (03) : 459 - 475
  • [46] Benchmarking Least Squares Support Vector Machine Classifiers
    Tony van Gestel
    Johan A.K. Suykens
    Bart Baesens
    Stijn Viaene
    Jan Vanthienen
    Guido Dedene
    Bart de Moor
    Joos Vandewalle
    Machine Learning, 2004, 54 : 5 - 32
  • [47] Multiple birth least squares support vector machine for multi-class classification
    Chen, Su-Gen
    Wu, Xiao-Jun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2017, 8 (06) : 1731 - 1742
  • [48] KNN-based least squares twin support vector machine for pattern classification
    A. Mir
    Jalal A. Nasiri
    Applied Intelligence, 2018, 48 : 4551 - 4564
  • [49] A sparse least squares Support Vector Machine classifier
    Liu, Xiao-Mao
    Kong, Bo
    Gao, Jun-Bin
    Zhang, Jun
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2007, 20 (05): : 681 - 687
  • [50] Asymmetric least squares support vector machine classifiers
    Huang, Xiaolin
    Shi, Lei
    Suykens, Johan A. K.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 395 - 405