A mixed effects least squares support vector machine model for classification of longitudinal data

被引:25
作者
Luts, Jan [1 ,2 ]
Molenberghs, Geert [3 ,4 ]
Verbeke, Geert [4 ]
Van Huffel, Sabine [1 ,2 ]
Suykens, Johan A. K. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT, Res Div SCD, B-3001 Louvain, Belgium
[2] IBBT KU Leuven Future Hlth Dept, Louvain, Belgium
[3] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium
[4] Katholieke Univ Leuven, I BioStat, B-3000 Louvain, Belgium
关键词
Classification; Longitudinal data; Least squares; Support vector machine; Kernel method; Mixed model;
D O I
10.1016/j.csda.2011.09.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A mixed effects least squares support vector machine (LS-SVM) classifier is introduced to extend the standard LS-SVM classifier for handling longitudinal data. The mixed effects LS-SVM model contains a random intercept and allows to classify highly unbalanced data, in the sense that there is an unequal number of observations for each case at non-fixed time points. The methodology consists of a regression modeling and a classification step based on the obtained regression estimates. Regression and classification of new cases are performed in a straightforward manner by solving a linear system. It is demonstrated that the methodology can be generalized to deal with multi-class problems and can be extended to incorporate multiple random effects. The technique is illustrated on simulated data sets and real-life problems concerning human growth. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:611 / 628
页数:18
相关论文
共 26 条
  • [1] Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: A longitudinal study
    Bachrach, LK
    Hastie, T
    Wang, MC
    Narasimhan, B
    Marcus, R
    [J]. JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1999, 84 (12) : 4702 - 4712
  • [2] Brown P J, 2001, Biostatistics, V2, P417, DOI 10.1093/biostatistics/2.4.417
  • [3] Optimized fixed-size kernel models for large data sets
    De Brabanter, K.
    De Brabanter, J.
    Suykens, J. A. K.
    De Moor, B.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (06) : 1484 - 1504
  • [4] Approximate Confidence and Prediction Intervals for Least Squares Support Vector Regression
    De Brabanter, Kris
    De Brabanter, Jos
    Suykens, Johan A. K.
    De Moor, Bart
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (01): : 110 - 120
  • [5] De la Cruz-Mesía R, 2007, J ROY STAT SOC C-APP, V56, P119, DOI 10.1111/j.1467-9876.2007.00569.x
  • [6] Fixed-size least squares support vector machines: A large scale application in electrical load forecasting
    Espinoza M.
    Suykens J.A.K.
    De Moor B.
    [J]. Computational Management Science, 2006, 3 (2) : 113 - 129
  • [7] Predicting renal graft failure using multivariate longitudinal profiles
    Fieuws, Steffen
    Verbeke, Geert
    Maes, Bart
    Vanrenterghem, Yves
    [J]. BIOSTATISTICS, 2008, 9 (03) : 419 - 431
  • [8] Statistics for functional data
    Gonzalez Manteiga, Wenceslao
    Vieu, Philippe
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (10) : 4788 - 4792
  • [9] Generalized linear models with functional predictors
    James, GM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 : 411 - 432
  • [10] Functional linear discriminant analysis for irregularly sampled curves
    James, GM
    Hastie, TJ
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 : 533 - 550