A mixed effects least squares support vector machine model for classification of longitudinal data

被引:25
作者
Luts, Jan [1 ,2 ]
Molenberghs, Geert [3 ,4 ]
Verbeke, Geert [4 ]
Van Huffel, Sabine [1 ,2 ]
Suykens, Johan A. K. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT, Res Div SCD, B-3001 Louvain, Belgium
[2] IBBT KU Leuven Future Hlth Dept, Louvain, Belgium
[3] Univ Hasselt, I BioStat, B-3590 Diepenbeek, Belgium
[4] Katholieke Univ Leuven, I BioStat, B-3000 Louvain, Belgium
关键词
Classification; Longitudinal data; Least squares; Support vector machine; Kernel method; Mixed model;
D O I
10.1016/j.csda.2011.09.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A mixed effects least squares support vector machine (LS-SVM) classifier is introduced to extend the standard LS-SVM classifier for handling longitudinal data. The mixed effects LS-SVM model contains a random intercept and allows to classify highly unbalanced data, in the sense that there is an unequal number of observations for each case at non-fixed time points. The methodology consists of a regression modeling and a classification step based on the obtained regression estimates. Regression and classification of new cases are performed in a straightforward manner by solving a linear system. It is demonstrated that the methodology can be generalized to deal with multi-class problems and can be extended to incorporate multiple random effects. The technique is illustrated on simulated data sets and real-life problems concerning human growth. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:611 / 628
页数:18
相关论文
共 26 条
[1]   Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: A longitudinal study [J].
Bachrach, LK ;
Hastie, T ;
Wang, MC ;
Narasimhan, B ;
Marcus, R .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1999, 84 (12) :4702-4712
[2]  
Brown P J, 2001, Biostatistics, V2, P417, DOI 10.1093/biostatistics/2.4.417
[3]   Optimized fixed-size kernel models for large data sets [J].
De Brabanter, K. ;
De Brabanter, J. ;
Suykens, J. A. K. ;
De Moor, B. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (06) :1484-1504
[4]   Approximate Confidence and Prediction Intervals for Least Squares Support Vector Regression [J].
De Brabanter, Kris ;
De Brabanter, Jos ;
Suykens, Johan A. K. ;
De Moor, Bart .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (01) :110-120
[5]  
De la Cruz-Mesía R, 2007, J ROY STAT SOC C-APP, V56, P119, DOI 10.1111/j.1467-9876.2007.00569.x
[6]   Fixed-size least squares support vector machines: A large scale application in electrical load forecasting [J].
Espinoza M. ;
Suykens J.A.K. ;
De Moor B. .
Computational Management Science, 2006, 3 (2) :113-129
[7]   Predicting renal graft failure using multivariate longitudinal profiles [J].
Fieuws, Steffen ;
Verbeke, Geert ;
Maes, Bart ;
Vanrenterghem, Yves .
BIOSTATISTICS, 2008, 9 (03) :419-431
[8]   Statistics for functional data [J].
Gonzalez Manteiga, Wenceslao ;
Vieu, Philippe .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (10) :4788-4792
[9]   Generalized linear models with functional predictors [J].
James, GM .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 :411-432
[10]   Functional linear discriminant analysis for irregularly sampled curves [J].
James, GM ;
Hastie, TJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :533-550