Scattering theory for radial nonlinear Schrodinger equations on hyperbolic space

被引:34
作者
Banica, Valeria [1 ]
Carles, Remi [2 ,3 ]
Staffilani, Gigliola [4 ]
机构
[1] Univ Evry, Dept Math, F-91025 Evry, France
[2] CNRS, F-34095 Montpellier 5, France
[3] Univ Montpellier 2, F-34095 Montpellier 5, France
[4] MIT, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
nonlinear Schrodinger equations on manifolds; asymptotic behavior; Strichartz estimates; Morawetz estimates;
D O I
10.1007/s00039-008-0663-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the long-time behavior of radial solutions to nonlinear Schrodinger equations on hyperbolic space. We show that the usual distinction between short-range and long-range nonlinearity is modified: the geometry of the hyperbolic space makes every power-like nonlinearity short range. The proofs rely on weighted Strichartz estimates, which imply Strichartz estimates for a broader family of admissible pairs, and on Morawetz-type inequalities. The latter are established without symmetry assumptions.
引用
收藏
页码:367 / 399
页数:33
相关论文
共 39 条
[1]   The nonlinear Schrodinger equation on hyperbolic space [J].
Banica, V. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (10-12) :1643-1677
[2]   On the nonlinear Schrodinger dynamics on S2 [J].
Banica, V .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01) :77-98
[4]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[5]  
Bourgain J., 1993, Geometric Functional Analysis GAFA, V3, P209
[6]   Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (03) :569-605
[7]   Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrodinger equations [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2005, 38 (02) :255-301
[8]  
Burq N, 2002, MATH RES LETT, V9, P323
[9]   Global existence results for nonlinear Schrodinger equations with quadratic potentials [J].
Carles, R .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (02) :385-398
[10]  
Carles R, 2004, OSAKA J MATH, V41, P693