Scattering theory for radial nonlinear Schrodinger equations on hyperbolic space

被引:34
作者
Banica, Valeria [1 ]
Carles, Remi [2 ,3 ]
Staffilani, Gigliola [4 ]
机构
[1] Univ Evry, Dept Math, F-91025 Evry, France
[2] CNRS, F-34095 Montpellier 5, France
[3] Univ Montpellier 2, F-34095 Montpellier 5, France
[4] MIT, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
nonlinear Schrodinger equations on manifolds; asymptotic behavior; Strichartz estimates; Morawetz estimates;
D O I
10.1007/s00039-008-0663-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the long-time behavior of radial solutions to nonlinear Schrodinger equations on hyperbolic space. We show that the usual distinction between short-range and long-range nonlinearity is modified: the geometry of the hyperbolic space makes every power-like nonlinearity short range. The proofs rely on weighted Strichartz estimates, which imply Strichartz estimates for a broader family of admissible pairs, and on Morawetz-type inequalities. The latter are established without symmetry assumptions.
引用
收藏
页码:367 / 399
页数:33
相关论文
共 39 条