Likelihood based inference in non-linear regression models using the p* and R* approach

被引:1
作者
Tocquet, AS [1 ]
机构
[1] Univ dEvry Val dEssonne, Dept Math, F-91025 Evry, France
关键词
affine ancillary statistic; conditional inference; Laplace's approximation; modified log-likelihood ratio test; non-linear regression;
D O I
10.1111/1467-9469.00246
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop second order asymptotic results for likelihood-based inference in Gaussian non-linear regression models. We provide an approximation to the conditional density of the maximum likelihood estimator given an approximate ancillary statistic (the affine ancillary). From this approximation, we derive a statistic to test an hypothesis on one component of the parameter. This test statistic is an adjustment of the signed log-likelihood ratio statistic. The distributional approximations (for the maximum likelihood estimator and for the test statistic) are of second order in large deviation regions.
引用
收藏
页码:429 / 443
页数:15
相关论文
共 25 条
[1]   On large deviations and choice of ancillary for p* and r* [J].
Barndorff-Nielsen, OE ;
Wood, ATA .
BERNOULLI, 1998, 4 (01) :35-63
[2]  
BARNDORFFNEILSE.O, 1994, INFERENCE ASYMPTOTIC
[3]  
BARNDORFFNIELSE.OE, 1994, BIOMETRIKA, V81, P484
[4]  
BARNDORFFNIELSEN O, 1980, BIOMETRIKA, V67, P293, DOI 10.1093/biomet/67.2.293
[5]  
BARNDORFFNIELSEN OE, 1991, BIOMETRIKA, V78, P557
[6]  
BARNDORFFNIELSEN OE, 1986, BIOMETRIKA, V73, P307
[7]  
BARNDORFFNIELSEN OE, 1995, BIOMETRIKA, V82, P489, DOI 10.1093/biomet/82.3.489
[8]  
BATES DM, 1980, J ROY STAT SOC B MET, V40, P1
[9]  
HUET S, 1988, METHODES STAT MODELI
[10]  
Ivanov A. V., 1997, ASYMPTOTIC THEORY NO