Graphene quantum dot-assisted preparation of water-borne reduced graphene oxide/polyaniline: From composite powder to layer-by-layer self-assembly film and performance enhancement

被引:20
作者
Wang, Sumin [1 ]
Zhang, Kai [1 ]
Wang, Qiguan [1 ]
Fan, Yaru [1 ]
Shen, Jingwen [1 ]
Li, Lu [1 ]
Yang, Lei [1 ]
Zhang, Wenzhi [1 ]
机构
[1] Xian Technol Univ, Sch Mat & Chem Engn, Shaanxi Key Lab Photoelect Funct Mat & Devices, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene quantum dot-graphene oxide; Water-borne polyaniline; Composite powder; Layer-by-layer self-assembly; Electrochemistry; HIGH-POWER; PI-PI; CARBON; POLYANILINE; ELECTRODES; NANOCOMPOSITES; SURFACE; SUPERCAPACITORS; FABRICATION; NIFEDIPINE;
D O I
10.1016/j.electacta.2018.10.135
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this paper, aqueous solution of reduced graphene oxide has been prepared assisted by the graphene quantum dot, which is then mixed with aqueous polyaniline solution to form water-borne reduced graphene oxide/polyaniline composite powder. The resultant graphene quantum dot-reduced graphene oxide/polyaniline shows a specific morphology of nanosized polyaniline firmly attached on reduced graphene oxide layer, due to the good dispersion of reduced graphene oxide and polyaniline inwater. The monodispersion leads to the close contact between reduced graphene oxide sheets and polyaniline particles, significantly depressing the accumulation. It leads to the enhanced conductivity, supercapacitance and cycling stability for graphene quantum dot-reduced graphene oxide/polyaniline, with capacitance as high as 648 F g(-1). After 5000 charge-discharge cycles, the capacitance of as-prepared reduced graphene oxide/polyaniline composite shows just 3.7% decay while it reaches 68% for polyaniline. Furthermore, driven by the strong electrostatic forces between the electropositive polyaniline and the electronegative graphene quantum dot-reduced graphene oxide as well as the pi-pi interactions, the obtained nanosized graphene quantum dot-reduced graphene oxide/polyaniline films from the controllable layer-by-layer method show the morphology of interconnected-layer networks and exhibit good electrochemical activity on H2O2 in the range of 5.0 x 10(-7) -3.5 x 10(-5) M. The detection limit is as low as 1.1 mu M. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 41 条
[1]   Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of Ag nanoparticles at the surface of glassy carbon electrode: Application to the analysis of some real samples [J].
Baghayeri, Mehdi ;
Namadchian, Melika ;
Karimi-Maleh, Hassan ;
Beitollahi, Hadi .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 697 :53-59
[2]   "Green" carbon with hierarchical three dimensional porous structure derived from - Pongamia pinnata seed oil extract cake and NiCo2O4-Ni(OH)2/Multiwall carbon nanotubes nanocomposite as electrode materials for high performance asymmetric supercapacitor [J].
Chaitra, K. ;
Narendra, Reddy ;
Venkatesh, Krishna ;
Nagaraju, N. ;
Kathyayini, Nagaraju .
JOURNAL OF POWER SOURCES, 2017, 356 :212-222
[3]   WATER-SOLUBLE SELF-ACID-DOPED CONDUCTING POLYANILINE - STRUCTURE AND PROPERTIES [J].
CHEN, SA ;
HWANG, GW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (40) :10055-10062
[4]   Preparation and electrochemical characterization of polyaniline/multi-walled carbon nanotubes composites for supercapacitor [J].
Dong, Bin ;
He, Ben-Lin ;
Xu, Cai-Ling ;
Li, Hu-Lin .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2007, 143 (1-3) :7-13
[5]   Highly microporous carbons derived from a complex of glutamic acid and zinc chloride for use in supercapacitors [J].
Dong, Xiao-Ling ;
Lu, An-Hui ;
He, Bin ;
Li, Wen-Cui .
JOURNAL OF POWER SOURCES, 2016, 327 :535-542
[6]   Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors - A review [J].
Faraji, Soheila ;
Ani, Farid Nasir .
JOURNAL OF POWER SOURCES, 2014, 263 :338-360
[7]   Review on recent progress of nanostructured anode materials for Li-ion batteries [J].
Goriparti, Subrahmanyam ;
Miele, Ermanno ;
De Angelis, Francesco ;
Di Fabrizio, Enzo ;
Zaccaria, Remo Proietti ;
Capiglia, Claudio .
JOURNAL OF POWER SOURCES, 2014, 257 :421-443
[8]   Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors [J].
Gupta, Vinay ;
Miura, Norio .
ELECTROCHIMICA ACTA, 2006, 52 (04) :1721-1726
[9]   On-chip and freestanding elastic carbon films for micro-supercapacitors [J].
Huang, P. ;
Lethien, C. ;
Pinaud, S. ;
Brousse, K. ;
Laloo, R. ;
Turq, V. ;
Respaud, M. ;
Demortiere, A. ;
Daffos, B. ;
Taberna, P. L. ;
Chaudret, B. ;
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2016, 351 (6274) :691-695
[10]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339