Vanishing viscosity limits for axisymmetric flows with boundary

被引:4
作者
Abe, Ken [1 ]
机构
[1] Osaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 137卷
关键词
Navier-Stokes equations; Axisymmetric solutions; Vanishing viscosity limits; Euler equations; NAVIER-STOKES EQUATIONS; AXIALLY-SYMMETRIC FLOWS; WEAK SOLUTIONS; EULER EQUATIONS; INCOMPRESSIBLE EULER; INVISCID LIMIT; ENERGY-CONSERVATION; ONSAGERS CONJECTURE; LAPLACE OPERATORS; GLOBAL EXISTENCE;
D O I
10.1016/j.matpur.2020.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct global weak solutions of the Euler equations in an infinite cylinder = {x E R3 = (x1, x2), r = < 1} for axisymmetric initial data without swirl when initial vorticity wo = wgeo satisfies wg/r E Lq for q E [3/2, 3). The solutions constructed are Holder continuous for spatial variables in 7 if in addition that wg/r E LS for s E (3, Do) and unique if s = Do. The proof is by a vanishing viscosity method. We show that the Navier-Stokes equations subject to the Neumann boundary condition is globally well-posed for axisymmetric data without swirl in LT for all p E [3, Do). It is also shown that the energy dissipation tends to zero if wg/r E Lq for q E [3/2,2], and Navier-Stokes flows converge to Euler flow in L2 locally uniformly for t E [0, Do) if additionally wg/r E L. The L2 -convergence in particular implies the energy equality for weak solutions. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 86 条
[1]   Axisymmetric flows in the exterior of a cylinder [J].
Abe, K. ;
Seregin, G. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (04) :1671-1698
[2]   The Navier-Stokes equations with the Neumann boundary condition in an infinite cylinder [J].
Abe, K. .
MANUSCRIPTA MATHEMATICA, 2019, 160 (3-4) :359-383
[3]   Axisymmetric solution result regularity for the Navier-Stokes system [J].
Abidi, Hammadi .
BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (07) :592-624
[4]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[5]   On a Resolvent Estimate of a System of Laplace Operators with Perfect Wall Condition [J].
Akiyama, T. ;
Kasai, H. ;
Shibata, Y. ;
Tsutsumi, M. .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2004, 47 (03) :361-394
[6]   EXISTENCE AND UNIQUENESS OF SOLUTION TO BIDIMENSIONAL EULER EQUATION [J].
BARDOS, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (03) :769-790
[7]   Onsager's Conjecture for the Incompressible Euler Equations in Bounded Domains [J].
Bardos, Claude ;
Titi, Edriss S. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (01) :197-207
[8]   On the Vanishing Viscosity Limit of 3D Navier-Stokes Equations under Slip Boundary Conditions in General Domains [J].
Berselli, Luigi Carlo ;
Spirito, Stefano .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 316 (01) :171-198
[9]  
Bourguignon J.P., 1974, J. Func. Anal, V15, P341, DOI DOI 10.1016/0022-1236(74)90027-5
[10]   Axisymmetric weak solutions of the 3-D Euler equations for incompressible fluid flows [J].
Chae, D ;
Kim, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 29 (12) :1393-1404