Solvability of nonlinear elliptic boundary value problem via its associated linear problem

被引:1
作者
Han, ZQ [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116023, Liaoning, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
elliptic boundary value problem; eigenvalue; Leray-Schauder principle;
D O I
10.1016/j.jmaa.2003.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the existence of solutions of a nonlinear elliptic boundary value problem at resonance. Under the condition that the associated linear boundary value problem has no sign-changing solution or nontrivial solution and some other additional conditions, we prove the existence of solutions or nontrivial (even multiple) solutions to the nonlinear problem. Thus the existence of solutions can be obtained when the nonlinearity may cross any finite number of eigenvalues of the linear problem. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:21 / 34
页数:14
相关论文
共 24 条
[2]  
Amann H., 1980, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V7, P539
[3]  
[Anonymous], 1981, COMMUN PARTIAL DIFFE, DOI [DOI 10.1080/03605308108820172, 10.1080/03605308108820172]
[4]  
Brezis H., 1978, ANN SCUOLA NORM SUP, V5, P225
[5]  
CHANG KC, 1983, SCI SINICA A, V26, P1256
[6]  
Courant, 1953, METHODS MATH PHYS
[7]  
Courant R., 1962, Methods of mathematical physics, VII
[9]   A LIAPUNOV-TYPE RESULT WITH APPLICATION TO A DIRICHLET-TYPE 2-POINT BOUNDARY-VALUE PROBLEM AT RESONANCE [J].
DANCER, EN ;
GUPTA, CP .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (03) :305-318
[10]  
De Figueiredo D. G., 1979, Nonlinear Analysis Theory, Methods & Applications, V3, P629, DOI 10.1016/0362-546X(79)90091-9