Changing the Microstructural and Chemical Properties of Graphene Oxide Through a Chemical Route

被引:5
作者
Protopapa, Maria Lucia [1 ]
Burresi, Emiliano [1 ]
Plamisano, Martino [1 ]
Pesce, Emanuela [1 ]
Latterini, Loredana [2 ]
Taurisano, Nicola [3 ,4 ]
Quaglia, Giulia [2 ]
Mazzaro, Raffaello [5 ,6 ]
Morandi, Vittorio [5 ]
机构
[1] SSPT PROMAS MATAS, Brindisi Res Ctr, ENEA, Brindisi, Italy
[2] Univ Perugia, Dept Chem Biol & Biotechnol, Perugia, Italy
[3] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Campus Ecotekne, Lecce, Italy
[4] CNR NANOTEC, Inst Nanotechnol, Campus Ecotekne, Lecce, Italy
[5] CNR, Inst Microelect & Microsyst IMM, Sect Bologna, Bologna, Italy
[6] Univ Bologna, Dept Phys & Astron, Bologna, Italy
基金
欧盟地平线“2020”;
关键词
Graphene oxide; Fourier transform infrared spectroscopy; FT-IR spectroscopy; Raman spectroscopy; photoluminescence; CARBON-BLACK; PHOTOLUMINESCENCE; GRAPHITE; FLUORESCENCE; TRANSPORT;
D O I
10.1177/00037028221127048
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The aim of this work is to investigate the possibility of engineering desired molecular sp(2) structures in graphene oxide, via controlled oxidation of graphite powder, in order to achieve tunable chemical and microstructural properties useful for optoelectronics or sensing applications. Specifically, GO powder is obtained by a modified Hummers method, by using different concentrations of potassium permanganate (KMnO4) in order to change the number of oxygen functionalities in the graphitic structure. Then, a successive alkaline treatment is performed by increasing the KOH concentration. The alkaline treatment induces a noticeable variation of the GO microstructural and chemical properties, which is accompanied by a strong enhancement of photoluminecence. PL and PLE measurements reveal that the configuration of electronic energy states changes as a function of the KMnO4 and KOH concentration, by introducing further electronic n levels available for n ->pi* transitions. In particular, the number of sp(2) small domains embedded among oxygen-sp(3) domains, increases under the KOH treatment, due to the addition of OH groups. Most of these sp(2) domains are lifted-off from GO and thrown away in the surnatant giving it high blue photoluminescence excited at lambda(exc) similar to 319 nm. The employ of combined spectroscopy techniques allows a deep investigation of the microstructural and chemical changes induced by chemical treatments, opening the way to the fine tuning of GO functional properties.
引用
收藏
页码:1452 / 1464
页数:13
相关论文
共 30 条
[1]   Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites [J].
Bokobza, Liliane ;
Bruneel, Jean-Luc ;
Couzi, Michel .
C-JOURNAL OF CARBON RESEARCH, 2015, 1 (01) :77-94
[2]   Influence of the synthesis conditions on the microstructural, compositional and morphological properties of graphene oxide sheets [J].
Burresi, E. ;
Taurisano, N. ;
Protopapa, M. L. ;
Latterini, L. ;
Palmisano, M. ;
Mirenghi, L. ;
Schioppa, M. ;
Morandi, V ;
Mazzaro, R. ;
Penza, M. .
CERAMICS INTERNATIONAL, 2020, 46 (14) :22067-22078
[3]   Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].
Cai, Weiwei ;
Piner, Richard D. ;
Stadermann, Frank J. ;
Park, Sungjin ;
Shaibat, Medhat A. ;
Ishii, Yoshitaka ;
Yang, Dongxing ;
Velamakanni, Aruna ;
An, Sung Jin ;
Stoller, Meryl ;
An, Jinho ;
Chen, Dongmin ;
Ruoff, Rodney S. .
SCIENCE, 2008, 321 (5897) :1815-1817
[4]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[5]   Manipulation and Quantification of Graphene Oxide Flake Size: Photoluminescence and Cytotoxicity [J].
Coleman, Brian R. ;
Knight, Timothy ;
Gies, Valerie ;
Jakubek, Zygmunt J. ;
Zou, Shan .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (34) :28911-28921
[6]   Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model [J].
Dimiev, Ayrat M. ;
Alemany, Lawrence B. ;
Tour, James M. .
ACS NANO, 2013, 7 (01) :576-588
[7]   Excitation wavelength dependent UV fluorescence of dispersed modified graphene oxide: Effect of pH [J].
Dutta, Partha ;
Nandi, Debabrata ;
Datta, Sudeshna ;
Chakraborty, Subhajit ;
Das, Nilimesh ;
Chatterjee, Shovon ;
Ghosh, Uday Chand ;
Haider, Arnab .
JOURNAL OF LUMINESCENCE, 2015, 168 :269-275
[8]   Blue Photoluminescence from Chemically Derived Graphene Oxide [J].
Eda, Goki ;
Lin, Yun-Yue ;
Mattevi, Cecilia ;
Yamaguchi, Hisato ;
Chen, Hsin-An ;
Chen, I-Sheng ;
Chen, Chun-Wei ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (04) :505-+
[9]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[10]   Quasi-Molecular Fluorescence from Graphene Oxide [J].
Galande, Charudatta ;
Mohite, Aditya D. ;
Naumov, Anton V. ;
Gao, Wei ;
Ci, Lijie ;
Ajayan, Anakha ;
Gao, Hui ;
Srivastava, Anchal ;
Weisman, R. Bruce ;
Ajayan, Pulickel M. .
SCIENTIFIC REPORTS, 2011, 1