Propagation of Optical Coherence Vortex Lattices in Turbulent Atmosphere

被引:16
作者
Huang, Yan [1 ]
Yuan, Yangsheng [2 ,3 ]
Liu, Xianlong [2 ,3 ]
Zeng, Jun [1 ]
Wang, Fei [1 ]
Yu, Jiayi [1 ]
Liu, Lin [1 ]
Cai, Yangjian [1 ,2 ,3 ]
机构
[1] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[2] Shandong Normal Univ, Ctr Light Manipulat & Applicat, Jinan 250014, Shandong, Peoples R China
[3] Shandong Normal Univ, Shandong Prov Key Lab Opt & Photon Device, Sch Phys & Elect, Jinan 250014, Shandong, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 12期
基金
中国国家自然科学基金;
关键词
optical coherence vortex lattices; atmospheric turbulence; evolution properties; free-space optical communications; SCHELL-MODEL BEAM; PHASE-INDUCED REDUCTION; GAUSSIAN BEAMS; FREE-SPACE; SCINTILLATION; KOLMOGOROV; WANDER; FIELD;
D O I
10.3390/app8122476
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Propagation properties in the turbulence atmosphere of the optical coherence vortex lattices (OCVLs) are explored by the recently developed convolution approach. The evolution of spectral density distribution, the normalized M-2-factor, and the beam wander of the OCVLs propagating through the atmospheric turbulence with Tatarskii spectrum are illustrated numerically. Our results show that the OCVLs display interesting propagation properties, e.g., the initial Gaussian beam distribution will evolve into hollow array distribution on propagation and finally becomes a Gaussian beam spot again in the far field in turbulent atmosphere. Furthermore, the OCVLs with large topological charge, large beam array order, large relative distance, and small coherence length are less affected by the negative effects of turbulence. Our results are expected to be used in the complex system optical communications.
引用
收藏
页数:10
相关论文
共 54 条
[1]   Scintillations of partially coherent multiple Gaussian beams in turbulence [J].
Baykal, Yahya ;
Eyyuboglu, Halil T. ;
Cai, Yangjian .
APPLIED OPTICS, 2009, 48 (10) :1943-1954
[2]   Excitation strategies for optical lattice microscopy [J].
Betzig, E .
OPTICS EXPRESS, 2005, 13 (08) :3021-3036
[3]   Ultracold quantum gases in optical lattices [J].
Bloch, I .
NATURE PHYSICS, 2005, 1 (01) :23-30
[4]   Partially coherent vortex beams with a separable phase [J].
Bogatyryova, GV ;
Fel'de, CV ;
Polyanskii, PV ;
Ponomarenko, SA ;
Soskin, MS ;
Wolf, E .
OPTICS LETTERS, 2003, 28 (11) :878-880
[5]   Experimental generation of optical coherence lattices [J].
Chen, Yahong ;
Ponomarenko, Sergey A. ;
Cai, Yangjian .
APPLIED PHYSICS LETTERS, 2016, 109 (06)
[6]   Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam [J].
Chen, Yahong ;
Wang, Fei ;
Zhao, Chengliang ;
Cai, Yangjian .
OPTICS EXPRESS, 2014, 22 (05) :5826-5838
[7]   Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere [J].
Dan, Youquan ;
Zhang, Bin .
OPTICS EXPRESS, 2008, 16 (20) :15563-15575
[8]   Second moments of partially coherent beams in atmospheric turbulence [J].
Dan, Youquan ;
Zhang, Bin .
OPTICS LETTERS, 2009, 34 (05) :563-565
[9]   Surface acoustic wave nebulization on nanocrystalline ZnO film [J].
Fu, Y. Q. ;
Li, Y. ;
Zhao, C. ;
Placido, F. ;
Walton, A. J. .
APPLIED PHYSICS LETTERS, 2012, 101 (19)
[10]   Spreading of partially coherent beams in random media [J].
Gbur, G ;
Wolf, E .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2002, 19 (08) :1592-1598