Relevance Vector Machine classification for big data on Ebola outbreak

被引:0
作者
Sharma, Sunaina [1 ]
Mangat, Veenu [1 ]
机构
[1] Panjab Univ, UIET, Dept Informat Technol, Chandigarh, India
来源
2015 1ST INTERNATIONAL CONFERENCE ON NEXT GENERATION COMPUTING TECHNOLOGIES (NGCT) | 2015年
关键词
big data; classification; relevance vector machine; data mining; neural network; support vector machine; nave Bayesian; decision tree; Issues: volume; velocity variety; value; complexity;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Currently, huge sizes of indeterminate data are effortlessly collected or created at a very high pace in numerous real-life applications. Classifying this indefinite big data, is computationally intensive as large amount of data is related with existential probability of undefined or undetermined values of raw data. In this study, we propose a data mining approach for the classification of big dataset based on death toll by epidemic outbreak of Ebola virus and comparing its relevance with other epidemic diseases and generalizing error and intra class separability using relevance vector machine classifier.
引用
收藏
页码:639 / 643
页数:5
相关论文
共 10 条
  • [1] [Anonymous], 2011, BIG DATA NEXT FRONTI
  • [2] Kejariwal A., P CGC 2012
  • [3] From Databases to Big Data
    Madden, Sam
    [J]. IEEE INTERNET COMPUTING, 2012, 16 (03) : 4 - 6
  • [4] Ranjit Kumar Reddy G., PROJECT REPORT
  • [5] Satyanarayana Lenka Venkata, 2015, IJCST, V6
  • [6] Selvathi D., 2011, IEEE SIGN PROC COMM
  • [7] Shuib Nor Liyana Mohd, UKSIM AMSS 16 INT C
  • [8] Tzikas Dimitris G., 2006, TUTORIAL RELEVANCE V
  • [9] Wang Jianwu, 2014, BIG DATA APPL USING
  • [10] YIN Jin-liang, 2012, POW EN ENG C APPEEC