Dimension of polar sets for Brownian Sheet

被引:1
作者
Chen, ZL [1 ]
Liu, SY
机构
[1] Xidian Univ, Dept Math Appl, Xian 710071, Peoples R China
[2] Yangtze Univ, Dept Math, Jinzhou 434104, Peoples R China
关键词
Brownian Sheet; polar set; hausdorff dimension; packing dimension;
D O I
10.1016/S0252-9602(17)30499-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W (=) over cap {W(t);tis an element ofR(+)(N)} be the d-dimensional N-parameter Brownian Sheet. Sufficient conditions for a compact set F subset of R-d \ {0} to be a polar set for W are proved. It is also proved that if 2N less than or equal to d, then for any compact set Esubset ofR(>)(N), inf{dimF:Fis an element ofB(R-d),P{W(E)boolean ANDFnot equalphi}>0}=d-2DimE, and if 2N > d, then for any compact set Fsubset ofR(d)\{0}, inf{dimE:Eis an element ofB(R->(N)),P{W(E)boolean ANDFnot equalphi}>0} = d/2-DimF/2, where B(R-d) and B(R->(N)) denote the Borel sigma-algebra in R-d and R->(N) respectively, and dim and Dim are Hausdorff dimension and Packing dimension respectively.
引用
收藏
页码:549 / 560
页数:12
相关论文
共 50 条
[41]   The fractal dimensions of the level sets of the generalized iterated Brownian motion [J].
Chang-qing Tong ;
Zheng-yan Lin ;
Jing Zheng .
Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 :597-602
[42]   The Fractal Dimensions of the Level Sets of the Generalized Iterated Brownian Motion [J].
Chang-qing TONG ;
Zheng-yan LIN ;
Jing ZHENG .
Acta Mathematicae Applicatae Sinica, 2013, (03) :597-602
[43]   Non-independence of excursions of the Brownian sheet and of additive Brownian motion [J].
Dalang, RC ;
Mountford, T .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (03) :967-985
[44]   On Convex Limit Sets and Brownian Motion [J].
J. Kuelbs ;
M. Ledoux .
Journal of Theoretical Probability, 1998, 11 :461-492
[45]   On convex limit sets and Brownian motion [J].
Kuelbs, J ;
Ledoux, M .
JOURNAL OF THEORETICAL PROBABILITY, 1998, 11 (02) :461-492
[47]   On the packing dimension and category of exceptional sets of orthogonal projections [J].
Tuomas Orponen .
Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 :843-880
[48]   FRACTAL PROPERTIES OF POLAR SETS OF RANDOM STRING PROCESSES [J].
陈振龙 .
ActaMathematicaScientia, 2011, 31 (03) :969-992
[49]   FRACTAL PROPERTIES OF POLAR SETS OF RANDOM STRING PROCESSES [J].
Chen Zhenlong .
ACTA MATHEMATICA SCIENTIA, 2011, 31 (03) :969-992
[50]   QUASI-EVERYWHERE PROPERTIES OF BROWNIAN LEVEL SETS AND MULTIPLE POINTS [J].
PENROSE, MD .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1990, 36 (01) :33-43