Dimension of polar sets for Brownian Sheet

被引:1
作者
Chen, ZL [1 ]
Liu, SY
机构
[1] Xidian Univ, Dept Math Appl, Xian 710071, Peoples R China
[2] Yangtze Univ, Dept Math, Jinzhou 434104, Peoples R China
关键词
Brownian Sheet; polar set; hausdorff dimension; packing dimension;
D O I
10.1016/S0252-9602(17)30499-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W (=) over cap {W(t);tis an element ofR(+)(N)} be the d-dimensional N-parameter Brownian Sheet. Sufficient conditions for a compact set F subset of R-d \ {0} to be a polar set for W are proved. It is also proved that if 2N less than or equal to d, then for any compact set Esubset ofR(>)(N), inf{dimF:Fis an element ofB(R-d),P{W(E)boolean ANDFnot equalphi}>0}=d-2DimE, and if 2N > d, then for any compact set Fsubset ofR(d)\{0}, inf{dimE:Eis an element ofB(R->(N)),P{W(E)boolean ANDFnot equalphi}>0} = d/2-DimF/2, where B(R-d) and B(R->(N)) denote the Borel sigma-algebra in R-d and R->(N) respectively, and dim and Dim are Hausdorff dimension and Packing dimension respectively.
引用
收藏
页码:549 / 560
页数:12
相关论文
共 50 条
[31]   Mean estimation of Brownian sheet [J].
Arato, NM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 33 (08) :13-25
[32]   CRITICAL BROWNIAN SHEET DOES NOT HAVE DOUBLE POINTS [J].
Dalang, Robert C. ;
Khoshnevisan, Davar ;
Nualart, Eulalia ;
Wu, Dongsheng ;
Xiao, Yimin .
ANNALS OF PROBABILITY, 2012, 40 (04) :1829-1859
[33]   The dimension of sets determined by their code behavior [J].
Li, WX .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2003, 11 (04) :345-352
[34]   Stochastic integration with respect to local time of the Brownian sheet and regularising properties of Brownian sheet paths [J].
Bogso, Antoine-Marie ;
Dieye, Moustapha ;
Pamen, Olivier Menoukeu .
BERNOULLI, 2023, 29 (04) :2627-2651
[35]   Fractional Brownian motion and packing dimension [J].
Talagrand, M ;
Xiao, YM .
JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (03) :579-593
[36]   Quasisymmetric minimality on packing dimension for Moran sets [J].
Li, Yanzhe ;
Wu, Min ;
Xi, Lifeng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) :324-334
[37]   The Fourier dimension of Brownian limsup fractals [J].
Potgieter, Paul .
STATISTICS & PROBABILITY LETTERS, 2015, 106 :228-238
[38]   POLAR AND NONPOLAR SETS FOR A TREE INDEXED PROCESS [J].
EVANS, SN .
ANNALS OF PROBABILITY, 1992, 20 (02) :579-590
[39]   QUASISYMMETRICALLY MINIMAL MORAN SETS ON PACKING DIMENSION [J].
Li, Yanzhe ;
Fu, Xiaohui ;
Yang, Jiaojiao .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
[40]   The Fractal Dimensions of the Level Sets of the Generalized Iterated Brownian Motion [J].
Tong, Chang-qing ;
Lin, Zheng-yan ;
Zheng, Jing .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03) :597-602