Dimension of polar sets for Brownian Sheet

被引:1
作者
Chen, ZL [1 ]
Liu, SY
机构
[1] Xidian Univ, Dept Math Appl, Xian 710071, Peoples R China
[2] Yangtze Univ, Dept Math, Jinzhou 434104, Peoples R China
关键词
Brownian Sheet; polar set; hausdorff dimension; packing dimension;
D O I
10.1016/S0252-9602(17)30499-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let W (=) over cap {W(t);tis an element ofR(+)(N)} be the d-dimensional N-parameter Brownian Sheet. Sufficient conditions for a compact set F subset of R-d \ {0} to be a polar set for W are proved. It is also proved that if 2N less than or equal to d, then for any compact set Esubset ofR(>)(N), inf{dimF:Fis an element ofB(R-d),P{W(E)boolean ANDFnot equalphi}>0}=d-2DimE, and if 2N > d, then for any compact set Fsubset ofR(d)\{0}, inf{dimE:Eis an element ofB(R->(N)),P{W(E)boolean ANDFnot equalphi}>0} = d/2-DimF/2, where B(R-d) and B(R->(N)) denote the Borel sigma-algebra in R-d and R->(N) respectively, and dim and Dim are Hausdorff dimension and Packing dimension respectively.
引用
收藏
页码:549 / 560
页数:12
相关论文
共 21 条
[1]  
ADLER RJ, 1981, GEOMENTRY RANDOM FIE, P245
[2]   Packing dimension and Cartesian products [J].
Bishop, CJ ;
Peres, Y .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (11) :4433-4445
[3]  
CHEN ZL, 1997, J MATH PRC, V17, P373
[4]  
EHM W, 1981, Z WAHRSCHEINLICHKEIT, V56, P195, DOI 10.1007/BF00535741
[5]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2
[6]   MEASURES OF HAUSDORFF TYPE AND STABLE PROCESSES [J].
HAWKES, J .
MATHEMATIKA, 1978, 25 (50) :202-212
[7]  
Kahane J P., 1983, Sem Anal Harm, Orsay, V38, P74
[8]  
KAHANE JP, 1985, RANDOM SERIES FUNCTI
[9]  
Kakutani S., 1944, Proc. Imp. Acad. Tokyo, V20, P706, DOI 10.3792/pia/1195572706
[10]  
KHOSHNEVISAN D., 1997, LECT NOTES MATH, V1655, P190