The Boltzmann-Grad limit of the periodic Lorentz gas in two space dimensions

被引:20
作者
Caglioti, Emanuele [1 ]
Golse, Francois [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
[2] Ecole Polytech, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
关键词
D O I
10.1016/j.crma.2008.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The periodic Lorentz gas is the dynamical system corresponding to the free motion of a point particle in a periodic system of fixed spherical obstacles of radius r centered at the integer points of the Euclidian plane, assuming all collisions of the particle with the obstacles to be elastic. In this Note, we study this motion on time intervals of order 1/r as r -> 0(+).
引用
收藏
页码:477 / 482
页数:6
相关论文
共 10 条
[1]  
BLANK S, 1993, INT J MATH, V4, P721
[2]   The distribution of the free path lengths in the periodic two-dimensional Lorentz gas in the small-scatterer limit [J].
Boca, Florin P. ;
Zaharescu, Alexandru .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 269 (02) :425-471
[3]   On the distribution of free path lengths for the periodic Lorentz gas [J].
Bourgain, J ;
Golse, F ;
Wennberg, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 190 (03) :491-508
[4]   On the distribution of free path lengths for the periodic Lorentz gas III [J].
Caglioti, E ;
Golse, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (02) :199-221
[5]  
GALLAVOTTI G, 1972, 93304 MPARC
[6]   On the distribution of free path lengths for the periodic Lorentz gas II [J].
Golse, F ;
Wennberg, B .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (06) :1151-1163
[7]  
GOLSE F, IN PRESS ANN FAC SCI
[8]  
GOLSE F, 2006, OBERWOLFACH REPORTS, V3, P3214
[9]  
MARKLOF J, ARXIVMATHDS07064395
[10]  
MARKLOF J, ARXIVMATHDS08010612V