QTL mapping in outbred tetraploid (and diploid) diallel populations

被引:13
作者
Amadeu, Rodrigo R. [1 ]
Munoz, Patricio R. [1 ]
Zheng, Chaozhi [2 ]
Endelman, Jeffrey B. [3 ]
机构
[1] Univ Florida, Hort Sci Dept, Gainesville, FL 32611 USA
[2] Wageningen Univ & Res, Biometris, NL-6708 PB Wageningen, Netherlands
[3] Univ Wisconsin, Dept Hort, Madison, WI 53706 USA
基金
美国食品与农业研究所;
关键词
multiparental; polyploidy; dominance; haplotypes; MPP; Multiparental Populations; QUANTITATIVE TRAIT LOCI; GENETIC ARCHITECTURE; LINKAGE; POWER; SOFTWARE; FAMILIES; CROSSES; DESIGNS; GENOME; VALUES;
D O I
10.1093/genetics/iyab124
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Over the last decade, multiparental populations have become a mainstay of genetics research in diploid species. Our goal was to extend this paradigm to autotetraploids by developing software for quantitative trait locus (QTL) mapping in connected F1 populations derived from a set of shared parents. For QTL discovery, phenotypes are regressed on the dosage of parental haplotypes to estimate additive effects. Statistical properties of the model were explored by simulating half-diallel diploid and tetraploid populations with different population sizes and numbers of parents. Across scenarios, the number of progeny per parental haplotype (pph) largely determined the statistical power for QTL detection and accuracy of the estimated haplotype effects. Multiallelic QTL with heritability 0.2 were detected with 90% probability at 25 pph and genome-wide significance level 0.05, and the additive haplotype effects were estimated with over 90% accuracy. Following QTL discovery, the software enables a comparison of models with multiple QTL and nonadditive effects. To illustrate, we analyzed potato tuber shape in a half-diallel population with three tetraploid parents. A well-known QTL on chromosome 10 was detected, for which the inclusion of digenic dominance lowered the Deviance Information Criterion (DIC) by 17 points compared to the additive model. The final model also contained a minor QTL on chromosome 1, but higher-order dominance and epistatic effects were excluded based on the DIC. In terms of practical impacts, the software is already being used to select offspring based on the effect and dosage of particular haplotypes in breeding programs.
引用
收藏
页数:10
相关论文
共 56 条
[1]   Estimation of Molecular Pairwise Relatedness in Autopolyploid Crops [J].
Amadeu, Rodrigo R. ;
Lara, Leticia A. C. ;
Munoz, Patricio ;
Garcia, Antonio A. F. .
G3-GENES GENOMES GENETICS, 2020, 10 (12) :4579-4589
[2]   Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple [J].
Bink, M. C. A. M. ;
Jansen, J. ;
Madduri, M. ;
Voorrips, R. E. ;
Durel, C. -E. ;
Kouassi, A. B. ;
Laurens, F. ;
Mathis, F. ;
Gessler, C. ;
Gobbin, D. ;
Rezzonico, F. ;
Patocchi, A. ;
Kellerhals, M. ;
Boudichevskaia, A. ;
Dunemann, F. ;
Peil, A. ;
Nowicka, A. ;
Lata, B. ;
Stankiewicz-Kosyl, M. ;
Jeziorek, K. ;
Pitera, E. ;
Soska, A. ;
Tomala, K. ;
Evans, K. M. ;
Fernandez-Fernandez, F. ;
Guerra, W. ;
Korbin, M. ;
Keller, S. ;
Lewandowski, M. ;
Plocharski, W. ;
Rutkowski, K. ;
Zurawicz, E. ;
Costa, F. ;
Sansavini, S. ;
Tartarini, S. ;
Komjanc, M. ;
Mott, D. ;
Antofie, A. ;
Lateur, M. ;
Rondia, A. ;
Gianfranceschi, L. ;
van de Weg, W. E. .
THEORETICAL AND APPLIED GENETICS, 2014, 127 (05) :1073-1090
[3]   Quantifying the Power and Precision of QTL Analysis in Autopolyploids Under Bivalent and Multivalent Genetic Models [J].
Bourke, Peter M. ;
Hackett, Christine A. ;
Voorrips, Roeland E. ;
Visser, Richard G. F. ;
Maliepaard, Chris .
G3-GENES GENOMES GENETICS, 2019, 9 (07) :2107-2122
[4]   polymapR-linkage analysis and genetic map construction from F1 populations of outcrossing polyploids [J].
Bourke, Peter M. ;
van Geest, Geert ;
Voorrips, Roeland E. ;
Jansen, Johannes ;
Kranenburg, Twan ;
Shahin, Arwa ;
Visser, Richard G. F. ;
Arens, Paul ;
Smulders, Marinus J. M. ;
Maliepaard, Chris .
BIOINFORMATICS, 2018, 34 (20) :3496-3502
[5]  
Broman KW, 2009, STAT BIOL HEALTH, P1, DOI 10.1007/978-0-387-92125-9_1
[6]   The Genetic Architecture of Maize Flowering Time [J].
Buckler, Edward S. ;
Holland, James B. ;
Bradbury, Peter J. ;
Acharya, Charlotte B. ;
Brown, Patrick J. ;
Browne, Chris ;
Ersoz, Elhan ;
Flint-Garcia, Sherry ;
Garcia, Arturo ;
Glaubitz, Jeffrey C. ;
Goodman, Major M. ;
Harjes, Carlos ;
Guill, Kate ;
Kroon, Dallas E. ;
Larsson, Sara ;
Lepak, Nicholas K. ;
Li, Huihui ;
Mitchell, Sharon E. ;
Pressoir, Gael ;
Peiffer, Jason A. ;
Rosas, Marco Oropeza ;
Rocheford, Torbert R. ;
Cinta Romay, M. ;
Romero, Susan ;
Salvo, Stella ;
Sanchez Villeda, Hector ;
da Silva, H. Sofia ;
Sun, Qi ;
Tian, Feng ;
Upadyayula, Narasimham ;
Ware, Doreen ;
Yates, Heather ;
Yu, Jianming ;
Zhang, Zhiwu ;
Kresovich, Stephen ;
McMullen, Michael D. .
SCIENCE, 2009, 325 (5941) :714-718
[7]  
Butler D., 2017, ASREML R REFERENCE M
[8]  
CHURCHILL GA, 1994, GENETICS, V138, P963
[9]   Inferring the Allelic Series at QTL in Multiparental Populations [J].
Crouse, Wesley L. ;
Kelada, Samir N. P. ;
Valdar, William .
GENETICS, 2020, 216 (04) :957-983
[10]   Multiple QTL Mapping in Autopolyploids: A Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib Population [J].
da Silva Pereira, Guilherme ;
Gemenet, Dorcus C. ;
Mollinari, Marcelo ;
Olukolu, Bode A. ;
Wood, Joshua C. ;
Diaz, Federico ;
Mosquera, Veronica ;
Gruneberg, Wolfgang J. ;
Khan, Awais ;
Buell, C. Robin ;
Yencho, G. Craig ;
Zeng, Zhao-Bang .
GENETICS, 2020, 215 (03) :579-595