RADAR TARGET DETECTION IN STRONG CLUTTER USING SPATIAL-TEMPORAL U-NET

被引:0
作者
Luo, Dongqi [1 ]
Zhu, Jihong [1 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
来源
2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2022年
关键词
Deep learning; radar target detection; range-Doppler-matrix; spatial-temporal U-Net; CFAR;
D O I
10.1109/MLSP55214.2022.9943361
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In radar target detection problems, the detection performance relies heavily on the signal-to-clutter-ratio (SCR). In this paper, we investigate the problem of radar target detection in strong clutter. When the clutter is extremely strong, it is almost impossible to detect the targets with only one range-Doppler-matrix (RDM). To address this issue, we resort to another time dimension to improve the detection performance, and the Spatial-Temporal U-Net (ST U-Net) is employed. Compared with ordinary deep learning based detectors which only take the RDM under test as the input, the ST U-Net simultaneously takes in the RDM of the current coherent processing interval (CPI) and the neighboring CPIs to jointly learn the spatial and temporal patterns, which leads to better detection performance. Extensive simulation results show that the proposed ST U-Net outperforms other detectors in strong clutter environment.
引用
收藏
页数:6
相关论文
共 16 条
  • [1] OPTIMAL CFAR DETECTION IN WEIBULL CLUTTER
    ANASTASSOPOULOS, V
    LAMPROPOULOS, GA
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1995, 31 (01) : 52 - 64
  • [2] Cheng Joe, 2024, CRAN
  • [3] Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
  • [4] Daniel B., 2019, Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, USA, P1, DOI DOI 10.1109/RADAR.2019.8835792
  • [5] ANALYSIS OF SOME MODIFIED ORDERED STATISTIC CFAR - OSGO AND OSSO CFAR
    ELIASFUSTE, AR
    DEMERCADO, MG
    DAVO, E
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1990, 26 (01) : 197 - 202
  • [6] Array programming with NumPy
    Harris, Charles R.
    Millman, K. Jarrod
    van der Walt, Stefan J.
    Gommers, Ralf
    Virtanen, Pauli
    Cournapeau, David
    Wieser, Eric
    Taylor, Julian
    Berg, Sebastian
    Smith, Nathaniel J.
    Kern, Robert
    Picus, Matti
    Hoyer, Stephan
    van Kerkwijk, Marten H.
    Brett, Matthew
    Haldane, Allan
    del Rio, Jaime Fernandez
    Wiebe, Mark
    Peterson, Pearu
    Gerard-Marchant, Pierre
    Sheppard, Kevin
    Reddy, Tyler
    Weckesser, Warren
    Abbasi, Hameer
    Gohlke, Christoph
    Oliphant, Travis E.
    [J]. NATURE, 2020, 585 (7825) : 357 - 362
  • [7] Hu Cheng, 2021, IEEE T GEOSCI REMOTE, P1
  • [8] Kingma DP, 2014, ADV NEUR IN, V27
  • [9] Fast Two-Dimensional CFAR Procedure
    Kronauge, Matthias
    Rohling, Hermann
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (03) : 1817 - 1823
  • [10] An Improved CA-CFAR Method for Ship Target Detection in Strong Clutter Using UHF Radar
    Kuang, Chunming
    Wang, Caijun
    Wen, Biyang
    Hou, Yidong
    Lai, Yeping
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1445 - 1449