Gαi2 Signaling Promotes Skeletal Muscle Hypertrophy, Myoblast Differentiation, and Muscle Regeneration

被引:68
|
作者
Minetti, Giulia C. [2 ]
Feige, Jerome N. [2 ]
Rosenstiel, Antonia [2 ]
Bombard, Florian [2 ]
Meier, Viktor [2 ]
Werner, Annick [2 ]
Bassilana, Frederic [2 ]
Sailer, Andreas W. [2 ]
Kahle, Peter [2 ]
Lambert, Christian [2 ]
Glass, David J. [1 ]
Fornaro, Mara [2 ]
机构
[1] Novartis Inst Biomed Res, Cambridge, MA 02139 USA
[2] Novartis Inst Biomed Res, CH-4056 Basel, Switzerland
关键词
HEAVY-CHAIN ISOFORMS; ADENYLATE-CYCLASE; PROTEIN; PATHWAY; ACTIVATION; PROLIFERATION; MECHANISMS; REGULATOR; MYOGENIN; ATROPHY;
D O I
10.1126/scisignal.2002038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Skeletal muscle atrophy results in loss of strength and an increased risk of mortality. We found that lysophosphatidic acid, which activates a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor, stimulated skeletal muscle hypertrophy through activation of G alpha(i2). Expression of a constitutively active mutant of G alpha(i2) stimulated myotube growth and differentiation, effects that required the transcription factor NFAT (nuclear factor of activated T cells) and protein kinase C. In addition, expression of the constitutively active G alpha(i2) mutant inhibited atrophy caused by the cachectic cytokine TNF alpha (tumor necrosis factor-alpha) by blocking an increase in the abundance of the mRNA encoding the E3 ubiquitin ligase MuRF1 (muscle ring finger 1). G alpha(i2) activation also enhanced muscle regeneration and caused a switch to oxidative fibers. Our study thus identifies a pathway that promotes skeletal muscle hypertrophy and differentiation and demonstrates that G alpha(i2)-induced signaling can act as a counterbalance to MuRF1-mediated atrophy, indicating that receptors that act through G alpha(i2) might represent potential targets for preventing skeletal muscle wasting.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Urocortin 2 promotes hypertrophy and enhances skeletal muscle function through cAMP and insulin/IGF-1 signaling pathways
    Lautherbach, Natalia
    Goncalves, Dawit A. P.
    Silveira, Wilian A.
    Paula-Gomes, Silvia
    Valentim, Rafael Rossi
    Zanon, Neusa M.
    Pereira, Marcelo G.
    Miyabara, Elen H.
    Navegantes, Luiz C. C.
    Kettelhut, Isis C.
    MOLECULAR METABOLISM, 2022, 60
  • [22] Platelet releasate promotes skeletal myogenesis by increasing muscle stem cell commitment to differentiation and accelerates muscle regeneration following acute injury
    Scully, David
    Sfyri, Peggy
    Verpoorten, Sandrine
    Papadopoulos, Petros
    Carmen Munoz-Turrillas, Maria
    Mitchell, Robert
    Aburima, Ahmed
    Patel, Ketan
    Gutierrez, Laura
    Naseem, Khalid M.
    Matsakas, Antonios
    ACTA PHYSIOLOGICA, 2019, 225 (03)
  • [23] Controversies in TWEAK-Fn14 signaling in skeletal muscle atrophy and regeneration
    Pascoe, Amy L.
    Johnston, Amelia J.
    Murphy, Robyn M.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2020, 77 (17) : 3369 - 3381
  • [24] Bioactive biodegradable polycitrate nanoclusters enhances the myoblast differentiation and in vivo skeletal muscle regeneration via p38 MAPK signaling pathway
    Guo, Yi
    Wang, Min
    Ge, Juan
    Niu, Wen
    Chen, Mi
    Cheng, Wei
    Lei, Bo
    BIOACTIVE MATERIALS, 2020, 5 (03) : 486 - 495
  • [25] Hypoxic Signaling in Skeletal Muscle Maintenance and Regeneration: A Systematic Review
    Pircher, Tamara
    Wackerhage, Henning
    Aszodi, Attila
    Kammerlander, Christian
    Boecker, Wolfgang
    Saller, Maximilian Michael
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [26] The Role of AMPK in the Regulation of Skeletal Muscle Size, Hypertrophy, and Regeneration
    Thomson, David M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (10)
  • [27] Loss of MuRF1 in Duroc pigs promotes skeletal muscle hypertrophy
    Li, Jiaping
    Hu, Yiqing
    Li, Jiajia
    Wang, Haitao
    Wu, Hanyu
    Zhao, Chengcheng
    Tan, Tan
    Zhang, Li
    Zhu, Di
    Liu, Xu
    Li, Ning
    Hu, Xiaoxiang
    TRANSGENIC RESEARCH, 2023, 32 (03) : 153 - 167
  • [28] c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs
    Luo, Wen
    Chen, Jiahui
    Li, Limin
    Ren, Xueyi
    Cheng, Tian
    Lu, Shiyi
    Lawal, Raman Akinyanju
    Nie, Qinghua
    Zhang, Xiquan
    Hanotte, Olivier
    CELL DEATH AND DIFFERENTIATION, 2019, 26 (03) : 426 - 442
  • [29] Sphingosine 1-phosphate signaling is involved in skeletal muscle regeneration
    Danieli-Betto, Daniela
    Peron, Samantha
    Germinario, Elena
    Zanin, Marika
    Sorci, Guglielmo
    Franzoso, Susanna
    Sandona, Dorianna
    Betto, Romeo
    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2010, 298 (03): : C550 - C558
  • [30] TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo
    Joshi, Shilpy
    Davidson, Guillaume
    Le Gras, Stephanie
    Watanabe, Shuichi
    Braun, Thomas
    Mengus, Gabrielle
    Davidson, Irwin
    PLOS GENETICS, 2017, 13 (02):