Using Soft Polymer Template Engineering of Mesoporous TiO2 Scaffolds to Increase Perovskite Grain Size and Solar Cell Efficiency

被引:32
作者
Lian, Qing [1 ]
Mokhtar, Muhamad Z. [1 ]
Lu, Dongdong [1 ]
Zhu, Mingning [1 ]
Jacobs, Janet [2 ]
Foster, Andrew B. [1 ]
Thomas, Andrew G. [1 ,2 ,3 ]
Spencer, Ben F. [1 ,3 ]
Wu, Shanglin [1 ]
Liu, Chen [1 ]
Hodson, Nigel W. [4 ]
Smith, Benjamin [5 ]
Alkaltham, Abdulaziz [1 ]
Alkhudhari, Osama M. [1 ]
Watson, Trystan [5 ]
Saunders, Brian R. [1 ]
机构
[1] Univ Manchester, Dept Mat, Manchester M1 3BB, Lancs, England
[2] Univ Manchester, Photon Sci Inst, Manchester M13 9PL, Lancs, England
[3] Univ Manchester, Henry Royce Inst, Manchester M13 9PL, Lancs, England
[4] Univ Manchester, Fac Biol Med & Hlth, BioAFM Facil, Stopford Bldg, Manchester M13 9PT, Lancs, England
[5] Swansea Univ, SPECIFIC, Coll Engn, Bay Campus, Swansea SA1 8EN, W Glam, Wales
基金
英国工程与自然科学研究理事会;
关键词
perovskite solar cells; template engineering; mesoporous TiO2; microgel; porosity; grain size; MICROGEL PARTICLES; POROUS TIO2; THIN-FILMS; PERFORMANCE; PLANAR; RECOMBINATION; HYSTERESIS; TRANSPORT; BEHAVIOR; LIGHT;
D O I
10.1021/acsami.0c02248
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The mesoporous (meso)-TiO2 layer is a key component of high-efficiency perovskite solar cells (PSCs). Herein, pore size controllable meso-TiO2 layers are prepared using spin coating of commercial TiO2 nanoparticle (NP) paste with added soft polymer templates (SPT) followed by removal of the SPT at 500 degrees C. The SPTs consist of swollen crosslinked polymer colloids (microgels, MGs) or a commercial linear polymer (denoted as LIN). The MGs and LIN were comprised of the same polymer, which was poly(N-isopropylacrylamide) (PNIPAm). Large (L-MG) and small (S-MG) MG SPTs were employed to study the effect of the template size. The SPT approach enabled pore size engineering in one deposition step. The SPT/TiO2 nanoparticle films had pore sizes > 100 nm, whereas the average pore size was 37 nm for the control meso-TiO2 scaffold. The largest pore sizes were obtained using L-MG. SPT engineering increased the perovskite grain size in the same order as the SPT sizes: LIN < S-MG < L-MG and these grain sizes were larger than those obtained using the control. The power conversion efficiencies (PCEs) of the SPT/TiO2 devices were similar to 20% higher than that for the control meso-TiO2 device and the PCE of the champion S-MG device was 18.8%. The PCE improvement is due to the increased grain size and more effective light harvesting of the SPT devices. The increased grain size was also responsible for the improved stability of the SPT/TiO2 devices. The SPT method used here is simple, scalable, and versatile and should also apply to other PSCs.
引用
收藏
页码:18578 / 18589
页数:12
相关论文
共 75 条
  • [1] Towards nanostructured perovskite solar cells with enhanced efficiency: Coupled optical and electrical modeling
    Abdelraouf, Omar A. M.
    Allam, Nageh K.
    [J]. SOLAR ENERGY, 2016, 137 : 364 - 370
  • [2] Understanding Detrimental and Beneficial Grain Boundary Effects in Halide Perovskites
    Adhyaksa, Gede W. P.
    Brittman, Sarah
    Abolins, Haralds
    Lof, Andries
    Li, Xueying
    Keelor, Joel D.
    Luo, Yanqi
    Duevski, Teodor
    Heeren, Ron M. A.
    Ellis, Shane R.
    Fenning, David P.
    Garnett, Erik C.
    [J]. ADVANCED MATERIALS, 2018, 30 (52)
  • [3] The investigation of the unseen interrelationship of grain size, ionic defects, device physics and performance of perovskite solar cells
    Ameri, Mohsen
    Mohajerani, Ezeddin
    Ghafarkani, Mashhood
    Safari, Nasser
    Alavi, S. Ali
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (12)
  • [4] Ultrasoft, highly deformable microgels
    Bachman, Haylee
    Brown, Ashley C.
    Clarke, Kimberly C.
    Dhada, Kabir S.
    Douglas, Alison
    Hansen, Caroline E.
    Herman, Emily
    Hyatt, John S.
    Kodlekere, Purva
    Meng, Zhiyong
    Saxena, Shalini
    Spears, Mark W., Jr.
    Welsch, Nicole
    Lyon, L. Andrew
    [J]. SOFT MATTER, 2015, 11 (10) : 2018 - 2028
  • [5] Controlling the Morphology of Organic-Inorganic Hybrid Perovskites through Dual Additive-Mediated Crystallization for Solar Cell Applications
    Bae, Seunghwan
    Jo, Jea Woong
    Lee, Phillip
    Ko, Min Jae
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (19) : 17452 - 17458
  • [6] Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability
    Bag, Monojit
    Renna, Lawrence A.
    Adhikari, Ramesh Y.
    Karak, Supravat
    Liu, Feng
    Lahti, Paul M.
    Russell, Thomas P.
    Tuominen, Mark T.
    Venkataraman, D.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (40) : 13130 - 13137
  • [7] Tin(iv) dopant removal through anti-solvent engineering enabling tin based perovskite solar cells with high charge carrier mobilities
    Bandara, R. M. I.
    Jayawardena, K. D. G. I.
    Adeyemo, S. O.
    Hinder, S. J.
    Smith, J. A.
    Thirimanne, H. M.
    Wong, N. C.
    Amin, F. M.
    Freestone, B. G.
    Parnell, A. J.
    Lidzey, D. G.
    Joyce, H. J.
    Sporea, R. A.
    Silva, S. R. P.
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (27) : 8389 - 8397
  • [8] Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells
    Bi, Cheng
    Wang, Qi
    Shao, Yuchuan
    Yuan, Yongbo
    Xiao, Zhengguo
    Huang, Jinsong
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [9] Diffusion-Recombination Impedance Model for Solar Cells with Disorder and Nonlinear Recombination
    Bisquert, Juan
    Mora-Sero, Ivan
    Fabregat-Santiago, Francisco
    [J]. CHEMELECTROCHEM, 2014, 1 (01): : 289 - 296
  • [10] Reducing hole transporter use and increasing perovskite solar cell stability with dual-role polystyrene microgel particles
    Chen, Mu
    Mokhtar, Muhamad Z.
    Whittaker, Eric
    Lian, Qing
    Hamilton, Bruce
    O'Brien, Paul
    Zhu, Mingning
    Cui, Zhengxing
    Haque, Saif A.
    Saunders, Brian R.
    [J]. NANOSCALE, 2017, 9 (28) : 10126 - 10137