Geometric segmentation and object recognition in unordered and incomplete point cloud

被引:0
作者
Ahn, SJ [1 ]
Effenberger, I [1 ]
Roth-Koch, S [1 ]
Westkämper, E [1 ]
机构
[1] Fraunhofer IPA, D-70569 Stuttgart, Germany
来源
PATTERN RECOGNITION, PROCEEDINGS | 2003年 / 2781卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In applications of optical 3D-measurement techniques segmentation and outlier elimination in point clouds is a tedious and time-consuming task. In this paper, we present a very robust and efficient procedure of segmentation, outlier elimination, and model fitting in point clouds. For an accurate and reliable estimation of the model parameters, we apply orthogonal distance fitting (ODF) algorithms that minimize the square sum of the geometric error distances. The model parameters are grouped and simultaneously estimated in terms of form, position, and rotation parameters, hence providing a very advantageous algorithmic feature for segmentation and object recognition. We give an application example for the proposed procedure which is applied to an unordered and incomplete point cloud containing multiple objects taken by laser radar.
引用
收藏
页码:450 / 457
页数:8
相关论文
共 10 条
[1]  
Adcock R., 1877, ANALYST, V4, P183
[2]  
Ahn SJ, 2002, IEEE T PATTERN ANAL, V24, P620, DOI 10.1109/34.1000237
[3]  
AHN SJ, 2002, LECT NOTES COMPUT SC, V2249, P548
[4]  
DRIESCHNER R, 1991, 13417 BCR EUR EN COM
[5]  
Farin Gerald, 2002, Handbook of Computer Aided Geometric Design
[6]  
HASTIE T, 1984, 276 SLAC STANF U
[7]  
HEINZ I, 2001, P 5 C OPT 3 D MEAS T, P10
[8]  
ISO, 2001, 1036062001 ISO
[9]   On lines and planes of closest fit to systems of points in space. [J].
Pearson, Karl .
PHILOSOPHICAL MAGAZINE, 1901, 2 (7-12) :559-572
[10]  
ULLRICH A, 2001, P 5 C OPT 3 D MEAS T, P2