Plant Growth-Promoting Rhizobacteria With ACC Deaminase Activity Enhance Maternal Lateral Root and Seedling Growth in Switchgrass

被引:9
|
作者
Chen, Zhao [1 ]
Zhou, Wennan [2 ]
Sui, Xin [1 ]
Xu, Nan [1 ]
Zhao, Tian [3 ]
Guo, Zhipeng [1 ]
Niu, Junpeng [1 ]
Wang, Quanzhen [1 ]
机构
[1] Northwest Agr & Forestry Univ, Coll Anim Sci & Technol, Dept Grassland Sci, Xianyang, Peoples R China
[2] Lanzhou Univ, Coll Pastoral Agr Sci & Technol, State Key Lab Grassland Agroecosyst, Lanzhou, Peoples R China
[3] Guizhou Acad Agr Sci, Inst Anim Husb & Vet Med, Guiyang, Peoples R China
来源
基金
国家重点研发计划;
关键词
rhizosphere endophytic; Pseudomonas sp; Y1; switchgrass cv; blackwell; maternal lateral root; seedling growth; STRESS TOLERANCE; DROUGHT STRESS; NACL STRESS; ETHYLENE; PROLINE; NODULATION; YIELD; L; PHOTOSYNTHESIS; ESTABLISHMENT;
D O I
10.3389/fpls.2021.800783
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Switchgrass, a C4 plant with high potential as a bioenergy source, is unsteady in yield under sub-optimal conditions. Bacteria containing 1-aminocyclopropane-1-carboxylate synthase (ACC) deaminase can promote plant growth. We isolated bacteria containing ACC deaminase activity from switchgrass rhizosphere using an orthogonal matrix experimental design with four factors (bacterial liquid concentration, bacterial liquid treatment time, nitrogen content, and NaCl) to quantitatively investigate the effects and pairwise interactions on the seedling growth. Pseudomonas sp. Y1, isolated from the switchgrass cv. Blackwell rhizomes was selected. We optimized the inoculation bacterial concentration, treatment time, NaCl, and nitrogen concentration for the seedling growth. The optimal bacterial concentration, treatment time, NaCl, and nitrogen content was 0.5-1.25 OD at 600 nm, 3 h, 60-125 mM and 158 mg L-1, respectively. Pseudomonas sp. Y1 significantly increased the total root length, root surface, shoot length, and fresh and dry weight through an effective proliferation of the number of first-order lateral roots and root tips. This indicated that Pseudomonas sp. Y1 has a higher potential to be used as a plant growth-promoting rhizobacteria bacteria.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Isolate and Characterize ACC Deaminase-Containing Plant Growth-Promoting Rhizobacteria
    Guo Changhong
    Liu Jiali
    Lv Yueping
    INFORMATION TECHNOLOGY AND AGRICULTURAL ENGINEERING, 2012, 134 : 241 - 247
  • [2] Alleviation of Submergence Stress in Rice Seedlings by Plant Growth-Promoting Rhizobacteria With ACC Deaminase Activity
    Bal, Himadri Bhusan
    Adhya, Tapan Kumar
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2021, 5
  • [3] Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria
    Contesto, Celine
    Desbrosses, Guilhem
    Lefoulon, Cecile
    Bena, Gilles
    Borel, Florie
    Galland, Marc
    Gamet, Lydia
    Varoquaux, Fabrice
    Touraine, Bruno
    PLANT SCIENCE, 2008, 175 (1-2) : 178 - 189
  • [4] Isolation and Characterization of ACC Deaminase Gene from Two Plant Growth-Promoting Rhizobacteria
    Venkadasamy Govindasamy
    Murugesan Senthilkumar
    Kishore Gaikwad
    Kannepalli Annapurna
    Current Microbiology, 2008, 57 : 312 - 317
  • [5] Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria
    Govindasamy, Venkadasamy
    Senthilkumar, Murugesan
    Gaikwad, Kishore
    Annapurna, Kannepalli
    CURRENT MICROBIOLOGY, 2008, 57 (04) : 312 - 317
  • [6] Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria
    Penrose, DM
    Glick, BR
    PHYSIOLOGIA PLANTARUM, 2003, 118 (01) : 10 - 15
  • [7] Ethylene, ACC, and the Plant Growth-Promoting Enzyme ACC Deaminase
    Gamalero, Elisa
    Lingua, Guido
    Glick, Bernard R.
    BIOLOGY-BASEL, 2023, 12 (08):
  • [8] Detection and Characterization of ACC Deaminase in Plant Growth Promoting Rhizobacteria
    Govindasamy, V.
    Senthilkumar, M.
    Mageshwaran, V.
    Annapurna, K.
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2009, 18 (01) : 71 - 76
  • [9] Detection and Characterization of ACC Deaminase in Plant Growth Promoting Rhizobacteria
    V. Govindasamy
    M. Senthilkumar
    V. Mageshwaran
    K. Annapurna
    Journal of Plant Biochemistry and Biotechnology, 2009, 18 : 71 - 76
  • [10] Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria
    Shah, S
    Li, JP
    Moffatt, BA
    Glick, BR
    CANADIAN JOURNAL OF MICROBIOLOGY, 1998, 44 (09) : 833 - 843