Fault Hamiltonicity and fault Hamiltonian connectivity of the (n, k)-star graphs

被引:53
作者
Hsu, HC [1 ]
Hsieh, YL [1 ]
Tan, JJM [1 ]
Hsu, LH [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Comp & Informat Sci, Hsinchu 300, Taiwan
关键词
Hamiltonian cycle; Hamiltonian connected; (n; k)-star graph;
D O I
10.1002/net.10096
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the fault Hamiltonicity, and the fault Hamiltonian connectivity of the (n, k)-star graph S-n,S-k. Assume that F subset of V(S-n,S-k) boolean OR E(S-n,S-k). For n - k greater than or equal to 2, we prove that S-n,S-k - F is Hamiltonian if \F\ less than or equal to n - 3 and S-n,S-k - F is Hamiltonian connected if \F\ less than or equal to n - 4. For n - k = 1, S-n,S-n-1 is isomorphic to the n-star graph S-n which is known to be Hamiltonian if and only if n > 2 and Hamiltonian connected if and only if n = 2. Moreover, all the bounds are tight. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:189 / 201
页数:13
相关论文
共 7 条
[1]  
Akers S. B., 1987, Proceedings of the 1987 International Conference on Parallel Processing, P393
[2]  
Bondy J.A., 1980, Graph Theory with Applications
[3]   THE (N,K)-STAR GRAPH - A GENERALIZED STAR GRAPH [J].
CHIANG, WK ;
CHEN, RJ .
INFORMATION PROCESSING LETTERS, 1995, 56 (05) :259-264
[4]   Fault-free Hamiltonian cycles in faulty arrangement graphs [J].
Hsieh, SY ;
Chen, GH ;
Ho, CW .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1999, 10 (03) :223-237
[5]   Fault-tolerant hamiltonicity of twisted cubes [J].
Huang, WT ;
Tan, JJM ;
Hung, CN ;
Hsu, LH .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2002, 62 (04) :591-604
[6]   On the construction of combined k-fault-tolerant Hamiltonian graphs [J].
Hung, CN ;
Hsu, LH ;
Sung, TY .
NETWORKS, 2001, 37 (03) :165-170
[7]  
Ore O., 1963, J. Math. Pures Appl., V42, P21