VARIATIONAL INFERENCE FOR NONPARAMETRIC SUBSPACE DICTIONARY LEARNING WITH HIERARCHICAL BETA PROCESS

被引:0
|
作者
Li, Shaoyang [1 ]
Tao, Xiaoming [1 ]
Lu, Jianhua [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, TNList, Beijing 100084, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2017年
基金
中国国家自然科学基金;
关键词
Nonparametric Bayes; subspace dictionary learning; hierarchical Beta process; variational inference; image denoising;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nonparametric Bayesian models have been implemented in dictionary learning. However, for signal samples from multiple subspaces, existing methods only learn one uniform dictionary and thus are not optimal for representing the subspace structures. To address this issue, we first utilize a combination of Dirichlet process and hierarchical Beta process as priors to infer the latent subspace number and dictionary dimension automatically; second, to derive tractable variational inference, we modify the priors with the Sethuraman's construction and further employ the multinomial approximation. Experimental results indicate that our approach can achieve a set of non-parametric subspace dictionaries, while showing performance enhancements in the tasks of image denoising.
引用
收藏
页码:2691 / 2695
页数:5
相关论文
共 50 条
  • [1] Efficient EM-variational inference for nonparametric Hawkes process
    Zhou, Feng
    Luo, Simon
    Li, Zhidong
    Fan, Xuhui
    Wang, Yang
    Sowmya, Arcot
    Chen, Fang
    STATISTICS AND COMPUTING, 2021, 31 (04)
  • [2] Efficient EM-variational inference for nonparametric Hawkes process
    Feng Zhou
    Simon Luo
    Zhidong Li
    Xuhui Fan
    Yang Wang
    Arcot Sowmya
    Fang Chen
    Statistics and Computing, 2021, 31
  • [3] Variational Bayesian Inference for Nonparametric Signal Compressive Sensing on Structured Manifolds
    Li, Shaoyang
    Tao, Xiaoming
    Lu, Jianhua
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [4] Dirichlet process mixture model based nonparametric Bayesian modeling and variational inference
    Fei, Zhengshun
    Liu, Kangling
    Huang, Bingqiang
    Zheng, Yongping
    Xiang, Xinjian
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3048 - 3051
  • [5] Online Learning of a Dirichlet Process Mixture of Beta-Liouville Distributions via Variational Inference
    Fan, Wentao
    Bouguila, Nizar
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2013, 24 (11) : 1850 - 1862
  • [6] Variational Bayesian inference for a Dirichlet process mixture of beta distributions and application
    Lai, Yuping
    Ping, Yuan
    Xiao, Ke
    Hao, Bin
    Zhang, Xiufeng
    NEUROCOMPUTING, 2018, 278 : 23 - 33
  • [7] Dictionary learning algorithm based on variable Bayes inference
    Liu L.
    Wang X.-T.
    Kongzhi yu Juece/Control and Decision, 2020, 35 (02): : 469 - 473
  • [8] Variational Inference for Dirichlet Process Mixtures
    Blei, David M.
    Jordan, Michael I.
    BAYESIAN ANALYSIS, 2006, 1 (01): : 121 - 143
  • [9] LEARNING HARD ALIGNMENTS WITH VARIATIONAL INFERENCE
    Lawson, Dieterich
    Chiu, Chung-Cheng
    Tucker, George
    Raffel, Colin
    Swersky, Kevin
    Jaitly, Navdeep
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5799 - 5803
  • [10] Hierarchical Probabilistic Ultrasound Image Inpainting via Variational Inference
    Hung, Alex Ling Yu
    Sun, Zhiqing
    Chen, Wanwen
    Galeotti, John
    DEEP GENERATIVE MODELS, AND DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS, 2021, 13003 : 83 - 92