RANK-BASED ESTIMATION UNDER ASYMPTOTIC DEPENDENCE AND INDEPENDENCE, WITH APPLICATIONS TO SPATIAL EXTREMES

被引:2
作者
Lalancette, Michael [1 ]
Engelke, Sebastian [2 ]
Volgushev, Stanislav [1 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[2] Univ Geneva, Res Ctr Stat, Geneva, Switzerland
基金
瑞士国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Multivariate extremes; asymptotic independence; inverted max-stable distribution; spatial process; M-estimation; TAIL DEPENDENCE; RANDOM VECTORS; CONVERGENCE; MODELS; APPROXIMATION; BOOTSTRAP; INFERENCE; MAXIMA;
D O I
10.1214/20-AOS2046
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multivariate extreme value theory is concerned with modeling the joint tail behavior of several random variables. Existing work mostly focuses on asymptotic dependence, where the probability of observing a large value in one of the variables is of the same order as observing a large value in all variables simultaneously. However, there is growing evidence that asymptotic independence is equally important in real world applications. Available statistical methodology in the latter setting is scarce and not well understood theoretically. We revisit nonparametric estimation and introduce rank-based M-estimators for parametric models that simultaneously work under asymptotic dependence and asymptotic independence, without requiring prior knowledge on which of the two regimes applies. Asymptotic normality of the proposed estimators is established under weak regularity conditions. We further show how bivariate estimators can be leveraged to obtain parametric estimators in spatial tail models, and again provide a thorough theoretical justification for our approach.
引用
收藏
页码:2552 / 2576
页数:25
相关论文
共 54 条
  • [11] de Haan L., 2006, SPRING S OPERAT RES, DOI 10.1007/0-387-34471-3
  • [12] Parametric tail copula estimation and model testing
    de Haan, Laurens
    Neves, Claudia
    Peng, Liang
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (06) : 1260 - 1275
  • [13] Dombry C., 2017, ASYMPTOTIC PROPERTIE
  • [14] Bivariate tall estimation: dependence in asymptotic independence
    Draisma, G
    Drees, H
    Ferreira, A
    De Haan, L
    [J]. BERNOULLI, 2004, 10 (02) : 251 - 280
  • [15] Best attainable rates of convergence for estimators of the stable tail dependence function
    Drees, H
    Huang, X
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1998, 64 (01) : 25 - 47
  • [16] An M-estimator of spatial tail dependence
    Einmahl, John H. J.
    Kiriliouk, Anna
    Krajina, Andrea
    Segers, Johan
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 275 - 298
  • [17] AN M-ESTIMATOR FOR TAIL DEPENDENCE IN ARBITRARY DIMENSIONS
    Einmahl, John H. J.
    Krajina, Andrea
    Segers, Johan
    [J]. ANNALS OF STATISTICS, 2012, 40 (03) : 1764 - 1793
  • [18] MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATION OF THE SPECTRAL MEASURE OF AN EXTREME-VALUE DISTRIBUTION
    Einmahl, John H. J.
    Segers, Johan
    [J]. ANNALS OF STATISTICS, 2009, 37 (5B) : 2953 - 2989
  • [19] A method of moments estimator of tail dependence
    Einmahl, John H. J.
    Krajina, Andrea
    Segers, Johan
    [J]. BERNOULLI, 2008, 14 (04) : 1003 - 1026
  • [20] Sparse Structures for Multivariate Extremes
    Engelke, Sebastian
    Ivanovs, Jevgenijs
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 8, 2021, 2021, 8 : 241 - 270