QSAR, Molecular Docking, MD Simulation and MMGBSA Calculations Approaches to Recognize Concealed Pharmacophoric Features Requisite for the Optimization of ALK Tyrosine Kinase Inhibitors as Anticancer Leads

被引:22
作者
Jawarkar, Rahul D. [1 ]
Sharma, Praveen [1 ]
Jain, Neetesh [1 ]
Gandhi, Ajaykumar [2 ]
Mukerjee, Nobendu [3 ]
Al-Mutairi, Aamal A. [4 ]
Zaki, Magdi E. A. [4 ]
Al-Hussain, Sami A. [4 ]
Samad, Abdul [5 ]
Masand, Vijay H. [6 ]
Ghosh, Arabinda [7 ]
Bakal, Ravindra L. [8 ]
机构
[1] Oriental Univ, Fac Pharm, Indore 453555, Madhya Pradesh, India
[2] Govt Coll Arts & Sci, Dept Chem, Aurangabad 431004, Maharashtra, India
[3] Ramakrishna Mission Vivekananda Centenary Coll, Dept Microbiol, Kolkata 700118, W Bengal, India
[4] Imam Mohammad Ibn Saud Islamic Univ, Fac Sci, Dept Chem, Riyadh 13318, Saudi Arabia
[5] Tishk Int Univ, Fac Pharm, Dept Pharmaceut Chem, Erbil 44001, Kurdistan Regio, Iraq
[6] Vidyabharati Mahavidyalalya, Dept Chem, Camp Rd, Amravati 444602, Maharashtra, India
[7] Gauhati Univ, Dept Bot, Microbiol Div, Gauhati 781014, Assam, India
[8] Dr Rajendra Gode Inst Pharm, Dept Med Chem, Univ Mardi Rd, Amravati 444603, Maharashtra, India
来源
MOLECULES | 2022年 / 27卷 / 15期
关键词
ALK tyrosine kinase inhibitors; QSAR; anticancer; molecular docking; MD simulation; MMGBSA; DIFFERENT VALIDATION CRITERIA; REAL EXTERNAL PREDICTIVITY; PYMOL PLUGIN; CRIZOTINIB; LYMPHOMA; RECEPTOR; GENE; CHEMOTHERAPY; ACTIVATION; CERITINIB;
D O I
10.3390/molecules27154951
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the genetic algorithm-multi linear regression (GA-MLR) based on robust univariate and multivariate QSAR models with high statistical performance reflected in various parameters like, fitting parameters; R-2 = 0.69-0.87, F = 403.46-292.11, etc., internal validation parameters; Q(LOO)(2) = 0.69-0.86, Q(LMO)(2) = 0.69-0.86, CCCcv = 0.82-0.93, etc., or external validation parameters Q(F1)(2) = 0.64-0.82, Q(F2)(2) = 0.63-0.82, Q(F3)(2) = 0.65-0.81, R-ext(2) = 0.65-0.83 including RMSEtr < RMSEcv. The present QSAR evaluation successfully identified certain distinct structural features responsible for ALK TK inhibitory potency, such as planar Nitrogen within four bonds from the Nitrogen atom, Fluorine atom within five bonds beside the non-ring Oxygen atom, lipophilic atoms within two bonds from the ring Carbon atoms. Molecular docking, MD simulation, and MMGBSA computation results are in consensus with and complementary to the QSAR evaluations. As a result, the current study assists medicinal chemists in prioritizing compounds for experimental detection of anticancer activity, as well as their optimization towards more potent ALK tyrosine kinase inhibitor.
引用
收藏
页数:27
相关论文
共 44 条
  • [1] Bowers K.J., 2006, SC 06 P 2006 ACM IEE
  • [2] QSAR Modeling: Where Have You Been? Where Are You Going To?
    Cherkasov, Artem
    Muratov, Eugene N.
    Fourches, Denis
    Varnek, Alexandre
    Baskin, Igor I.
    Cronin, Mark
    Dearden, John
    Gramatica, Paola
    Martin, Yvonne C.
    Todeschini, Roberto
    Consonni, Viviana
    Kuz'min, Victor E.
    Cramer, Richard
    Benigni, Romualdo
    Yang, Chihae
    Rathman, James
    Terfloth, Lothar
    Gasteiger, Johann
    Richard, Ann
    Tropsha, Alexander
    [J]. JOURNAL OF MEDICINAL CHEMISTRY, 2014, 57 (12) : 4977 - 5010
  • [3] Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection
    Chirico, Nicola
    Gramatica, Paola
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2012, 52 (08) : 2044 - 2058
  • [4] Real External Predictivity of QSAR Models: How To Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient
    Chirico, Nicola
    Gramatica, Paola
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2011, 51 (09) : 2320 - 2335
  • [5] On the Misleading Use of QF32 for QSAR Model Comparison
    Consonni, Viviana
    Todeschini, Roberto
    Ballabio, Davide
    Grisoni, Francesca
    [J]. MOLECULAR INFORMATICS, 2019, 38 (1-2)
  • [6] Comments on the Definition of the Q2 Parameter for QSAR Validation
    Consonni, Viviana
    Ballabio, Davide
    Todeschini, Roberto
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (07) : 1669 - 1678
  • [7] Role and targeting of anaplastic lymphoma kinase in cancer
    Della Corte, Carminia Maria
    Viscardi, Giuseppe
    Di Liello, Raimondo
    Fasano, Morena
    Martinelli, Erika
    Troiani, Teresa
    Ciardiello, Fortunato
    Morgillo, Floriana
    [J]. MOLECULAR CANCER, 2018, 17
  • [8] Understanding the Roles of the "Two QSARs"
    Fujita, Toshio
    Winkler, David A.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (02) : 269 - 274
  • [9] NRGsuite: a PyMOL plugin to perform docking simulations in real time using FlexAID
    Gaudreault, Francis
    Morency, Louis-Philippe
    Najmanovich, Rafael J.
    [J]. BIOINFORMATICS, 2015, 31 (23) : 3856 - 3858
  • [10] The ChEMBL database in 2017
    Gaulton, Anna
    Hersey, Anne
    Nowotka, Michal
    Bento, A. Patricia
    Chambers, Jon
    Mendez, David
    Mutowo, Prudence
    Atkinson, Francis
    Bellis, Louisa J.
    Cibrian-Uhalte, Elena
    Davies, Mark
    Dedman, Nathan
    Karlsson, Anneli
    Magarinos, Maria Paula
    Overington, John P.
    Papadatos, George
    Smit, Ines
    Leach, Andrew R.
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D945 - D954