Influence of high-pressure torsion straining conditions on microstructure evolution in commercial purity aluminum

被引:67
作者
Todaka, Yoshikazu [1 ]
Umemoto, Minoru [1 ]
Yamazaki, Ayumi [1 ]
Sasaki, Jun [1 ]
Tsuchiya, Koichi [1 ]
机构
[1] Toyohashi Univ Technol, Dept Prod Syst Engn, Toyohashi, Aichi 4418580, Japan
关键词
microstructure; grain refinement; aluminum; heat generation; high-pressure torsion (HPT); severe plastic deformation (SPD);
D O I
10.2320/matertrans.ME200713
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The influence of heat generation during severe plastic deformation on microstructure evolution was investigated in commercial purity aluminum (Al 1050, CP-Al) by using high-pressure torsion (HPT) process. The microstructure was characterized by the observations of the torsion and the longitudinal planes. CP-Al disks were deformed by MPT-straining up to 20 turns (equivalent strain, E-eq, of similar to 600) at 0.2 or 5 rpm at room temperature. To prevent the increase in specimen temperature, HPT-straining was also carried out in liquid nitrogen. In the all conditions, the value of Vicker's microhardness, Hv, was saturated around 0.65 GPa and the microstructure consisted of the equiaxed grains of about 500 nm with quite low dislocation density. The microstructure in the early stage of HPT-straining showed the deformed (sub)structure, and then the equiaxed grain structure with high-angle boundaries formed by grain subdivision, recovery, continuous recrystallization and grain growth with increase in strain amounts and specimen temperature.
引用
收藏
页码:7 / 14
页数:8
相关论文
共 25 条
[1]   Fine-grained structure formation in austenitic stainless steel under multiple deformation at 0.5 Tm [J].
Belyakov, A ;
Sakai, T ;
Miura, H .
MATERIALS TRANSACTIONS JIM, 2000, 41 (04) :476-484
[2]  
Bridgman PW, 1952, STUDIES LARGE PLASTI
[3]   Structure of Cu deformed by high pressure torsion [J].
Hebesberger, T ;
Stüwe, HP ;
Vorhauer, A ;
Wetscher, F ;
Pippan, R .
ACTA MATERIALIA, 2005, 53 (02) :393-402
[4]   An investigation of grain boundaries in submicrometer-grained Al-Mg solid solution alloys using high-resolution electron microscopy [J].
Horita, Z ;
Smith, DJ ;
Furukawa, M ;
Nemoto, M ;
Valiev, RZ ;
Langdon, TG .
JOURNAL OF MATERIALS RESEARCH, 1996, 11 (08) :1880-1890
[5]  
Huang X, 2004, ULTRAFINE GRAINED MATERIALS III, P235
[6]   Microstructural evolution during accumulative roll-bonding of commercial purity aluminum [J].
Huang, X ;
Tsuji, N ;
Hansen, N ;
Minamino, Y .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 340 (1-2) :265-271
[7]   The process of grain refinement in equal-channel angular pressing [J].
Iwahashi, Y ;
Horita, Z ;
Nemoto, M ;
Langdon, TG .
ACTA MATERIALIA, 1998, 46 (09) :3317-3331
[8]   Microstructure and strength of commercial purity aluminium (AA 1200) cold-rolled to large strains [J].
Liu, Q ;
Huang, X ;
Lloyd, DJ ;
Hansen, N .
ACTA MATERIALIA, 2002, 50 (15) :3789-3802
[9]   Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process [J].
Saito, Y ;
Tsuji, N ;
Utsunomiya, H ;
Sakai, T ;
Hong, RG .
SCRIPTA MATERIALIA, 1998, 39 (09) :1221-1227
[10]   Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion [J].
Sakai, G ;
Horita, Z ;
Langdon, TG .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 393 (1-2) :344-351