Segmentation Google Earth Imagery Using K-Means Clustering and Normalized RGB Color Space

被引:4
作者
Rozanda, Nesdi Evrilyan [1 ]
Ismail, M. [1 ]
Permana, Inggih [1 ]
机构
[1] State Islamic Univ Sultan Syarif Kasim Riau, Dept Informat Syst, Pekanbaru, Indonesia
来源
COMPUTATIONAL INTELLIGENCE IN DATA MINING, VOL 1 | 2015年 / 31卷
关键词
Google earth imagery; Image segmentation; K-Means clustering; Normalized RGB color space;
D O I
10.1007/978-81-322-2205-7_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is defined as: "the search for homogenous regions in an image and later the classification of these regions". In this research, a remote sensing image, Pekanbaru city of Riau Province-Indonesia is provided for the green land segmentation. It is obtained by observing the surface of the earth using the Google Earth Imagery. To segment the green land of the given image, two different methods are used in this research, K-Means Clustering and Normalized RGB Color Space methods. This research is expected to have two clusters output: the spreading of green fields and not green fields. The result shows that the given Google Earth imagery can be segmented about 40.50 and 47.01 % pixels from all image pixels by K-Means Clustering and Normalized RGB Color Space respectively.
引用
收藏
页码:375 / 386
页数:12
相关论文
共 14 条
[1]  
Aher Medha, 2014, INT C EL SYST SIGN P, P111
[2]  
Almeer M H., 2012, International Journal of Emerging Technology and Advanced Engineering, V2, P1
[3]  
Chinki C., 2012, INT J INFOR TECHNOL, V1, P11
[4]  
Chipman J., 2007, REMOTE SENSING IMAGE
[5]   Cloud computing and Virtual Heritage: the social media-oriented paradigm experienced at Cineca [J].
Coralini, Antonella ;
Guidazzoli, Antonella ;
Malfetti, Paolo ;
Spigarolo, Micaela ;
Baglivo, Antonio .
2014 IEEE 3RD SYMPOSIUM ON NETWORK CLOUD COMPUTING AND APPLICATIONS (NCCA), 2014, :121-124
[6]  
Janssen I., 2012, J BMC MED RES METHOD, V12, P1
[7]  
Li Z., 2014, IEEE J-STARS, V99, P1
[8]  
MORENO F, 2001, P 8 IEEE INT C EM TE, V2, P527
[9]  
Narayana M., 2012, INT J ENG SCI TECHNO, V4, P56
[10]   Assessing aboveground tropical forest biomass using Google Earth canopy images [J].
Ploton, Pierre ;
Pelissier, Raphael ;
Proisy, Christophe ;
Flavenot, Theo ;
Barbier, Nicolas ;
Rai, S. N. ;
Couteron, Pierre .
ECOLOGICAL APPLICATIONS, 2012, 22 (03) :993-1003