Polynomial Decay Rate for Kirchhoff Type in Viscoelasticity with Logarithmic Nonlinearity and Not Necessarily Decreasing Kernel

被引:13
作者
Boulaaras, Salah [1 ,2 ]
Draifia, Alaeddin [3 ]
Alnegga, Mohammad [1 ]
机构
[1] Qassim Univ, Dept Math, Coll Sci & Arts, Buraydah 51921, Saudi Arabia
[2] Univ Oran 1, Lab Fundamental & Appl Math Oran LMFAO, Ahmed Benbella 31000, Oran, Algeria
[3] Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa 12002, Algeria
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 02期
关键词
global existence; polynomial decay; viscoelastic damping; intrinsic decay rates; GLOBAL EXISTENCE; GENERAL DECAY; BLOW-UP; SYSTEM;
D O I
10.3390/sym11020226
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper describes a polynomial decay rate of the solution of the Kirchhoff type in viscoelasticity with logarithmic nonlinearity, where an asymptotically-stable result of the global solution is obtained taking into account that the kernel is not necessarily decreasing.
引用
收藏
页数:24
相关论文
共 24 条
[1]   A general method for proving sharp energy decay rates for memory-dissipative evolution equations [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (15-16) :867-872
[2]   INFLATIONARY MODELS WITH LOGARITHMIC POTENTIALS [J].
BARROW, JD ;
PARSONS, P .
PHYSICAL REVIEW D, 1995, 52 (10) :5576-5587
[3]   One-dimensional Klein-Gordon equation with logarithmic nonlinearities [J].
Bartkowski, Konrad ;
Gorka, Przemyslaw .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (35)
[4]  
Bass R.W., 1991, NASA C PUBLICATION, V10065, P1
[5]  
Berrimi S., 2004, ELECTRON J DIFFER EQ, V2002, P1
[6]   General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel [J].
Boumaza, Nouri ;
Boulaaras, Salah .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) :6050-6069
[7]   General decay rate estimates for viscoelastic dissipative systems [J].
Cavalcanti, M. M. ;
Cavalcanti, V. N. Domingos ;
Martinez, P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) :177-193
[8]  
Cavalcanti M.M., 2001, Diff. Integ. Eqs, V14, P85
[9]  
Cavalcanti M. M., 2002, ELECTRON J DIFFER EQ, V2002, P1
[10]   Frictional versus viscoelastic damping in a semilinear wave equation [J].
Cavalcanti, MM ;
Oquendo, HP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1310-1324