Neuroprotection by the histone deacetylase inhibitor trichostatin A in a model of lipopolysaccharide-sensitised neonatal hypoxic-ischaemic brain injury

被引:68
作者
Fleiss, Bobbi [1 ,4 ]
Nilsson, Marie K. L.
Blomgren, Klas [2 ,3 ]
Mallard, Carina [1 ]
机构
[1] Univ Gothenburg, Perinatal Ctr, Dept Neurosci & Physiol, Sahlgrenska Acad, S-40530 Gothenburg, Sweden
[2] Univ Gothenburg, Inst Neurosci & Physiol, Ctr Brain Repair & Rehabil, S-40530 Gothenburg, Sweden
[3] Karolinska Inst, Dept Womens & Childrens Hlth, Karolinska Univ Hosp Q2 07, SE-17176 Stockholm, Sweden
[4] Hop Robert Debre, Inserm U676, F-75019 Paris, France
基金
英国医学研究理事会;
关键词
Neonatal; Histone deacetylase; Lipopolysaccharide; Trichostatin A; Hypoxia-ischaemia; FOCAL CEREBRAL-ISCHEMIA; VALPROIC ACID; SEX-DIFFERENCES; NEUROTROPHIC-FACTOR; MACROPHAGE CELLS; GENE-EXPRESSION; IMMATURE BRAIN; MOUSE-BRAIN; FEMALE MICE; RAT MODEL;
D O I
10.1186/1742-2094-9-70
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: Perinatal brain injury is complex and often associated with both inflammation and hypoxia-ischaemia (HI). In adult inflammatory brain injury models, therapies to increase acetylation are efficacious in reducing inflammation and cerebral injury. Our aim in the present study was to examine the neuropathological and functional effects of the histone deacetylase inhibitor (HDACi) trichostatin A (TSA) in a model of neonatal lipopolysaccharide (LPS)-sensitised HI. We hypothesised that, by decreasing inflammation, TSA would improve injury and behavioural outcome. Furthermore, TSA's effects on oligodendrocyte development, which is acetylation-dependent, were investigated. Methods: On postnatal day 8 (P8), male and female mice were exposed to LPS together with or without TSA. On P9 (14 hours after LPS), mice were exposed to HI (50 minutes at 10% O-2). Neuropathology was assessed at 24 hours, 5 days and 27 days post-LPS/HI via immunohistochemistry and/or Western blot analysis for markers of grey matter (microtubule-associated protein 2), white matter (myelin basic protein) and cell death (activated caspase-3). Effects of TSA on LPS or LPS/HI-induced inflammation (cytokines and microglia number) were assessed by Luminex assay and immunohistochemistry. Expression of acetylation-dependent oligodendrocyte maturational corepressors was assessed with quantitative PCR 6 hours after LPS and at 24 hours and 27 days post-LPS/HI. Animal behaviour was monitored with the open-field and trace fear-conditioning paradigms at 25 days post-LPS/HI to identify functional implications of changes in neuropathology associated with TSA treatment. Results: TSA induced increased Ac-H4 in females only after LPS exposure. Also only in females, TSA reduced grey matter and white matter injury at 5 days post-LPS/HI. Treatment altered animal behaviour in the open field and improved learning in the fear-conditioning test in females compared with LPS/HI-only females at 25 days post-HI. None of the inflammatory mechanisms assessed that are known to mediate neuroprotection by HDACi in adults correlated with improved outcome in TSA-treated neonatal females. Oligodendrocyte maturation was not different between the LPS-only and LPS + TSA-treated mice before or after exposure to HI. Conclusions: Hyperacetylation with TSA is neuroprotective in the female neonatal mouse following LPS/HI and correlates with improved learning long-term. TSA appears to exert neuroprotection via mechanisms unique to the neonate. Deciphering the effects of age, sex and inflammatory sensitisation in the cerebral response to HDACi is key to furthering the potential of hyperacetylation as a viable neuroprotectant. TSA did not impair oligodendrocyte maturation, which increases the possible clinical relevance of this strategy.
引用
收藏
页数:16
相关论文
共 63 条
[1]   Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function [J].
Brogdon, Jennifer L. ;
Xu, Yongyao ;
Szabo, Susanne J. ;
An, Shaojian ;
Buxton, Francis ;
Cohen, Dalia ;
Huang, Qian .
BLOOD, 2007, 109 (03) :1123-1130
[2]   The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin [J].
Butler, LM ;
Zhou, XB ;
Xu, WS ;
Scher, HI ;
Rifkind, RA ;
Marks, PA ;
Richon, VM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (18) :11700-11705
[3]   Long-term losses of amygdala corticotropin-releasing factor neurons are associated with behavioural outcomes following neonatal hypoxia-ischemia [J].
Carty, Michelle L. ;
Wixey, Julie A. ;
Kesby, James ;
Reinebrant, Hanna E. ;
Colditz, Paul B. ;
Gobe, Glenda ;
Buller, Kathryn M. .
BEHAVIOURAL BRAIN RESEARCH, 2010, 208 (02) :609-618
[4]  
Chakravortty D, 2000, J ENDOTOXIN RES, V6, P243, DOI 10.1179/096805100101532108
[5]   Shaping the nuclear action of NF-κB [J].
Chen, LF ;
Greene, WC .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2004, 5 (05) :392-401
[6]   Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity [J].
Chen, P. S. ;
Wang, C.-C. ;
Bortner, C. D. ;
Peng, G.-S. ;
Wu, X. ;
Pang, H. ;
Lu, R.-B. ;
Gean, P.-W. ;
Chuang, D.-M. ;
Hong, J.-S. .
NEUROSCIENCE, 2007, 149 (01) :203-212
[7]   Marked age-dependent neuroprotection by brain-derived neurotrophic factor against neonatal hypoxic-ischemic brain injury [J].
Cheng, Y ;
Gidday, JM ;
Yan, Q ;
Shah, AR ;
Holtzman, DM .
ANNALS OF NEUROLOGY, 1997, 41 (04) :521-529
[8]   Histone deacetylase inhibitor KBH-A42 inhibits cytokine production in RAW 264.7 macrophage cells and in vivo endotoxemia model [J].
Choi, Yongseok ;
Park, Song-Kyu ;
Kim, Hwan Mook ;
Kang, Jong Soon ;
Yoon, Yeo Dae ;
Han, Sang Bae ;
Han, Jeung Whan ;
Yang, Jee Sun ;
Han, Gyoonhee .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2008, 40 (05) :574-581
[9]   Intrauterine infection, cytokines, and brain damage in the preterm newborn [J].
Dammann, O ;
Leviton, A .
PEDIATRIC RESEARCH, 1997, 42 (01) :1-8
[10]   Inhibiting p53 pathways in microglia attenuates microglial-evoked neurotoxicity following exposure to Alzheimer peptides [J].
Davenport, Christopher M. ;
Sevastou, Ioanna G. ;
Hooper, Claudie ;
Pocock, Jennifer M. .
JOURNAL OF NEUROCHEMISTRY, 2010, 112 (02) :552-563