Long time existence of solutions to an elastic flow of networks

被引:13
|
作者
Garcke, Harald [1 ]
Menzel, Julia [1 ]
Pluda, Alessandra [2 ]
机构
[1] Univ Regensburg, Fak Math, Regensburg, Germany
[2] Univ Pisa, Dipartimento Matemat, Lgo B Pontecorvo 5, I-56125 Pisa, Italy
关键词
Geometric evolution equations; networks; parabolic system of fourth order; Willmore flow; Primary; Secondary; TRIPLE JUNCTIONS; CURVATURE; CURVES; MOTION; EVOLUTION; L-2-FLOW;
D O I
10.1080/03605302.2020.1771364
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
TheL(2)-gradient flow of the elastic energy of networks leads to a Willmore type evolution law with non-trivial nonlinear boundary conditions. We show local in time existence and uniqueness for this elastic flow of networks in a Sobolev space setting under natural boundary conditions. In addition, we show a regularisation property and geometric existence and uniqueness. The main result is a long time existence result using energy methods.
引用
收藏
页码:1253 / 1305
页数:53
相关论文
共 50 条