共 50 条
Long time existence of solutions to an elastic flow of networks
被引:13
|作者:
Garcke, Harald
[1
]
Menzel, Julia
[1
]
Pluda, Alessandra
[2
]
机构:
[1] Univ Regensburg, Fak Math, Regensburg, Germany
[2] Univ Pisa, Dipartimento Matemat, Lgo B Pontecorvo 5, I-56125 Pisa, Italy
关键词:
Geometric evolution equations;
networks;
parabolic system of fourth order;
Willmore flow;
Primary;
Secondary;
TRIPLE JUNCTIONS;
CURVATURE;
CURVES;
MOTION;
EVOLUTION;
L-2-FLOW;
D O I:
10.1080/03605302.2020.1771364
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
TheL(2)-gradient flow of the elastic energy of networks leads to a Willmore type evolution law with non-trivial nonlinear boundary conditions. We show local in time existence and uniqueness for this elastic flow of networks in a Sobolev space setting under natural boundary conditions. In addition, we show a regularisation property and geometric existence and uniqueness. The main result is a long time existence result using energy methods.
引用
收藏
页码:1253 / 1305
页数:53
相关论文