4H-SiC visible-blind single-photon avalanche diode for ultraviolet detection at 280 and 350 nm

被引:31
作者
Hu, Jun [1 ]
Xin, Xiaobin [2 ]
Li, Xueqing [2 ]
Zhao, Jian H. [1 ]
VanMil, Brenda L. [3 ]
Lew, Kok-Keong [3 ,4 ]
Myers-Ward, Rachael L. [3 ]
Eddy, Charles R., Jr. [3 ]
Gaskill, D. Kurt [3 ]
机构
[1] Rutgers State Univ, Dept Elect & Comp Engn, SiCLAB, Piscataway, NJ 08854 USA
[2] United Silicon Carbide Inc, New Brunswick Technol Ctr, New Brunswick, NJ 08901 USA
[3] USN, Res Lab, Washington, DC 20375 USA
[4] Intel Corp, Santa Clara, CA 95054 USA
关键词
counting efficiency (CE); dark count rate (DCR); passive quenching; single-photon avalanche diode (SPAD); single-photon detection efficiency (SPDE); visible blind; 4H-silicon carbide;
D O I
10.1109/TED.2008.926669
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper reports on a 4H-SiC single-photon avalanche diode (SPAD) operating at UV wavelengths of 280 and 350 run. The SPAD shows low dark currents of 20 and 57 fA at 80 V and 90% breakdown voltage, respectively. The quantum efficiency (QE) reaches its peak of 43% at 270 nm and is <0.007% at 400 nm, indicating a high UV-to-visible rejection ratio of >6100. The 4H-SiC SPAD shows a fast self-quenching and a high photon count rate of 1.44 MHz in the passive-quenching mode. At the wavelength of 280 nm, a single-photon detection efficiency (SPDE) of 2.83% with a low dark count rate of 22 kHz is achieved at the reverse bias of 116.8 V. The SPDE at 350 nm is lower, which is 0.195%, owing to the correspondingly smaller QE. Optimization measurements were conducted on SPDE as a function of voltage bias and signal output threshold.
引用
收藏
页码:1977 / 1983
页数:7
相关论文
共 19 条
[1]   Ultraviolet single photon detection with Geiger-mode 4H-SiC avalanche photodiodes [J].
Bai, Xiaogang ;
Mcintosh, Dion ;
Liu, Handin ;
Campbell, Joe C. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (21-24) :1822-1824
[2]  
Beck A.L., 2006, P SPIE, V6372
[3]   Geiger mode operation of ultraviolet 4H-SiC avalanche photodiodes [J].
Beck, AL ;
Karve, G ;
Wang, S ;
Ming, J ;
Guo, X ;
Campbell, JC .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (07) :1507-1509
[4]   Avalanche photodiodes and quenching circuits for single-photon detection [J].
Cova, S ;
Ghioni, M ;
Lacaita, A ;
Samori, C ;
Zappa, F .
APPLIED OPTICS, 1996, 35 (12) :1956-1976
[5]  
HU J, 2007, P ICSCRM OTS JAP OCT
[6]   ULTRAHIGH SENSITIVITY SINGLE-PHOTON DETECTOR USING A SI AVALANCHE PHOTODIODE FOR THE MEASUREMENT OF ULTRAWEAK BIOCHEMILUMINESCENCE [J].
ISOSHIMA, T ;
ISOJIMA, Y ;
HAKOMORI, K ;
KIKUCHI, K ;
NAGAI, K ;
NAKAGAWA, H .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (04) :2922-2926
[7]   Toward integrated single-photon-counting microarrays [J].
Jackson, JC ;
Phelan, D ;
Morrison, AP ;
Redfern, RM ;
Mathewson, A .
OPTICAL ENGINEERING, 2003, 42 (01) :112-118
[8]   Ionization rates and critical fields in 4H silicon carbide [J].
Konstantinov, AO ;
Wahab, Q ;
Nordell, N ;
Lindefelt, U .
APPLIED PHYSICS LETTERS, 1997, 71 (01) :90-92
[9]   Multiplication and excess noise characteristics of thin 4H-SiC UV avalanche photodiodes [J].
Ng, BK ;
Yan, F ;
David, JPR ;
Tozer, RC ;
Rees, GJ ;
Qin, C ;
Zhao, JH .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (09) :1342-1344
[10]  
PAU JL, 2007, APPL PHYS LETT, V91