Physical Principles of Nanoparticle Cellular Endocytosis

被引:873
作者
Zhang, Sulin [1 ,2 ]
Gao, Huajian [3 ]
Bao, Gang [4 ]
机构
[1] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
[3] Brown Univ, Sch Engn, Providence, RI 02912 USA
[4] Rice Univ, Dept Bioengn, Houston, TX 77005 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
nanoparticles; endocytosis; nanomedicine; cellular uptake; ligand-receptor binding; coarse-grained model; membrane bending; membrane tension; RECEPTOR-MEDIATED ENDOCYTOSIS; ONE-DIMENSIONAL NANOMATERIALS; RED-BLOOD-CELLS; VIRUS ENTRY; IN-VIVO; MAGNETIC NANOPARTICLES; COMPUTER-SIMULATIONS; LIPID-BILAYERS; QUANTUM DOTS; CANCER;
D O I
10.1021/acsnano.5b03184
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This review article focuses on the physiochemical mechanisms underlying nanoparticle uptake into cells. When nanoparticles are in close vicinity to a cell, the interactions between the nanoparticles and the cell membrane generate forces from different origins. This leads to the membrane wrapping of the nanoparticles followed by cellular uptake. This article discusses how the kinetics, energetics, and forces are related to these interactions and dependent on the size, shape, and stiffness of nanoparticles, the biomechanical properties of the cell membrane, as well as the local environment of the cells. The discussed fundamental principles of the physiochemical causes for nanoparticle cell interaction may guide new studies of nanoparticle endocytosis and lead to better strategies to design nanoparticle-based approaches for biomedical applications.
引用
收藏
页码:8655 / 8671
页数:17
相关论文
共 120 条
[41]  
Josephson L, 2001, ANGEW CHEM INT EDIT, V40, P3204, DOI 10.1002/1521-3773(20010903)40:17<3204::AID-ANIE3204>3.0.CO
[42]  
2-H
[43]   Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging [J].
Jun, YW ;
Huh, YM ;
Choi, JS ;
Lee, JH ;
Song, HT ;
Kim, S ;
Yoon, S ;
Kim, KS ;
Shin, JS ;
Suh, JS ;
Cheon, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (16) :5732-5733
[44]   Current Concepts: Nanomedicine. [J].
Kim, Betty Y. S. ;
Rutka, James T. ;
Chan, Warren C. W. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (25) :2434-2443
[45]   Physical principles of membrane remodelling during cell mechanoadaptation [J].
Kosmalska, Anita Joanna ;
Casares, Laura ;
Elosegui-Artola, Alberto ;
Thottacherry, Joseph Jose ;
Moreno-Vicente, Roberto ;
Gonzalez-Tarrago, Victor ;
Angel del Pozo, Miguel ;
Mayor, Satyajit ;
Arroyo, Marino ;
Navajas, Daniel ;
Trepat, Xavier ;
Gauthier, Nils C. ;
Roca-Cusachs, Pere .
NATURE COMMUNICATIONS, 2015, 6
[46]   Endocytosis of influenza viruses [J].
Lakadamyali, M ;
Rust, MJ ;
Zhuang, XW .
MICROBES AND INFECTION, 2004, 6 (10) :929-936
[47]   Key role of receptor density in colloid/cell specific interaction: a quantitative biomimetic study on giant vesicles [J].
Lamblet, M. ;
Delord, B. ;
Johannes, L. ;
van Effenterre, D. ;
Bassereau, P. .
EUROPEAN PHYSICAL JOURNAL E, 2008, 26 (1-2) :205-216
[48]  
Lee JH, 2007, NAT MED, V13, P95, DOI 10.20659/jfp.13.1_95
[49]   HOW DOES A VIRUS BUD [J].
LERNER, DM ;
DEUTSCH, JM ;
OSTER, GF .
BIOPHYSICAL JOURNAL, 1993, 65 (01) :73-79
[50]   Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells [J].
Lewin, M ;
Carlesso, N ;
Tung, CH ;
Tang, XW ;
Cory, D ;
Scadden, DT ;
Weissleder, R .
NATURE BIOTECHNOLOGY, 2000, 18 (04) :410-414