Physical Principles of Nanoparticle Cellular Endocytosis

被引:873
作者
Zhang, Sulin [1 ,2 ]
Gao, Huajian [3 ]
Bao, Gang [4 ]
机构
[1] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biomed Engn, University Pk, PA 16802 USA
[3] Brown Univ, Sch Engn, Providence, RI 02912 USA
[4] Rice Univ, Dept Bioengn, Houston, TX 77005 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
nanoparticles; endocytosis; nanomedicine; cellular uptake; ligand-receptor binding; coarse-grained model; membrane bending; membrane tension; RECEPTOR-MEDIATED ENDOCYTOSIS; ONE-DIMENSIONAL NANOMATERIALS; RED-BLOOD-CELLS; VIRUS ENTRY; IN-VIVO; MAGNETIC NANOPARTICLES; COMPUTER-SIMULATIONS; LIPID-BILAYERS; QUANTUM DOTS; CANCER;
D O I
10.1021/acsnano.5b03184
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This review article focuses on the physiochemical mechanisms underlying nanoparticle uptake into cells. When nanoparticles are in close vicinity to a cell, the interactions between the nanoparticles and the cell membrane generate forces from different origins. This leads to the membrane wrapping of the nanoparticles followed by cellular uptake. This article discusses how the kinetics, energetics, and forces are related to these interactions and dependent on the size, shape, and stiffness of nanoparticles, the biomechanical properties of the cell membrane, as well as the local environment of the cells. The discussed fundamental principles of the physiochemical causes for nanoparticle cell interaction may guide new studies of nanoparticle endocytosis and lead to better strategies to design nanoparticle-based approaches for biomedical applications.
引用
收藏
页码:8655 / 8671
页数:17
相关论文
共 120 条
[1]  
Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev.bioeng-071811-150124, 10.1146/annurev-bioeng-071811-150124]
[2]  
Alexiou C, 2000, CANCER RES, V60, P6641
[3]   Artificial viruses and their application to gene delivery. size-controlled gene coating with glycocluster nanoparticles [J].
Aoyama, Y ;
Kanamori, T ;
Nakai, T ;
Sasaki, T ;
Horiuchi, S ;
Sando, S ;
Niidome, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (12) :3455-3457
[4]   Shape transitions in lipid membranes and protein mediated vesicle fusion and fission [J].
Atilgan, Erdinc ;
Sun, Sean X. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (09)
[5]   Wrapping of nanoparticles by membranes [J].
Bahrami, Arnir H. ;
Raatz, Michael ;
Agudo-Canalejo, Jaime ;
Michel, Raphael ;
Curtis, Emily M. ;
Hall, Carol K. ;
Gradzielski, Michael ;
Lipowsky, Reinhard ;
Weikl, Thomas R. .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2014, 208 :214-224
[6]   Shedding light on the dynamics of endocytosis and viral budding [J].
Bao, G ;
Bao, XR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (29) :9997-9998
[7]   Adhesion-dependent cell mechanosensitivity [J].
Bershadsky, AD ;
Balaban, NQ ;
Geiger, B .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2003, 19 :677-695
[8]   Hepatitis C virus entry depends on clathrin-mediated endocytosis [J].
Blanchard, Emmanuelle ;
Belouzard, Sandrine ;
Goueslain, Lucie ;
Wakita, Takaji ;
Dubuisson, Jean ;
Wychowski, Czeslaw ;
Rouille, Yves .
JOURNAL OF VIROLOGY, 2006, 80 (14) :6964-6972
[9]   Flexible lipid bilayers in implicit solvent [J].
Brannigan, G ;
Philips, PF ;
Brown, FLH .
PHYSICAL REVIEW E, 2005, 72 (01)
[10]   Endocytosis at the nanoscale [J].
Canton, Irene ;
Battaglia, Giuseppe .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (07) :2718-2739