Spin-reorientation critical dynamics in the two-dimensional X Y model with a domain wall

被引:1
作者
Lei, X. W. [1 ]
Zhou, N. J. [2 ]
He, Y. Y. [3 ]
Zheng, B. [3 ,4 ]
机构
[1] Aba Teachers Univ, Inst Elect Informat & Automat, Wenchuan 623002, Peoples R China
[2] Hangzhou Normal Univ, Dept Phys, Hangzhou 311121, Zhejiang, Peoples R China
[3] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[4] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
NONEQUILIBRIUM CRITICAL-DYNAMICS; DEPINNING TRANSITION; CREEP;
D O I
10.1103/PhysRevE.99.022129
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In recent years, static and dynamic properties of non-180 degrees domain walls in magnetic materials have attracted a great deal of interest. In this paper, spin-reorientation critical dynamics in the two-dimensional XY model is investigated with Monte Carlo simulations and theoretical analyses based on the Langevin equation. At the Kosterlitz-Thouless phase transition, the dynamic scaling behaviors of the magnetization and the two-time correlation function are carefully analyzed, and critical exponents are accurately determined. When the initial value of the angle between adjacent domains is slightly lower than pi, a critical exponent is introduced to characterize the abnormal power-law increase of the magnetization in the horizontal direction inside the domain interface, which is measured to be psi = 0.0568(8). In addition, the relation psi = eta/2z is analytically deduced from the Langevin dynamics in the long-wavelength approximation, well consistent with numerical results.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Magnetic domain-wall logic [J].
Allwood, DA ;
Xiong, G ;
Faulkner, CC ;
Atkinson, D ;
Petit, D ;
Cowburn, RP .
SCIENCE, 2005, 309 (5741) :1688-1692
[2]   Submicrometer ferromagnetic NOT gate and shift register [J].
Allwood, DA ;
Xiong, G ;
Cooke, MD ;
Faulkner, CC ;
Atkinson, D ;
Vernier, N ;
Cowburn, RP .
SCIENCE, 2002, 296 (5575) :2003-2006
[3]   Nonequilibrium critical dynamics of the two-dimensional XY model [J].
Berthier, L ;
Holdsworth, PCW ;
Sellitto, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (09) :1805-1824
[4]   Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4 -: art. no. 117601 [J].
Braun, T ;
Kleemann, W ;
Dec, J ;
Thomas, PA .
PHYSICAL REVIEW LETTERS, 2005, 94 (11) :1-4
[5]   Breakdown of scaling in the nonequilibrium critical dynamics of the two-dimensional XY model [J].
Bray, AJ ;
Briant, AJ ;
Jervis, DK .
PHYSICAL REVIEW LETTERS, 2000, 84 (07) :1503-1506
[6]   Domain wall nanoelectronics [J].
Catalan, G. ;
Seidel, J. ;
Ramesh, R. ;
Scott, J. F. .
REVIEWS OF MODERN PHYSICS, 2012, 84 (01) :119-156
[7]   Creep and depinning in disordered media [J].
Chauve, P ;
Giamarchi, T ;
Le Doussal, P .
PHYSICAL REVIEW B, 2000, 62 (10) :6241-6267
[8]   Tailoring the chirality of magnetic domain walls by interface engineering [J].
Chen, Gong ;
Ma, Tianping ;
N'Diaye, Alpha T. ;
Kwon, Heeyoung ;
Won, Changyeon ;
Wu, Yizheng ;
Schmid, Andreas K. .
NATURE COMMUNICATIONS, 2013, 4
[9]   Critical exponents of the driven elastic string in a disordered medium [J].
Duemmer, O ;
Krauth, W .
PHYSICAL REVIEW E, 2005, 71 (06)
[10]   Nonsteady relaxation and critical exponents at the depinning transition [J].
Ferrero, E. E. ;
Bustingorry, S. ;
Kolton, A. B. .
PHYSICAL REVIEW E, 2013, 87 (03)