Strong solutions of the compressible nematic liquid crystal flow

被引:124
作者
Huang, Tao [1 ]
Wang, Changyou [1 ]
Wen, Huanyao [2 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Compressible fluid; Nematic liquid crystal flow; Strong solutions; Blow-up criterions; EXISTENCE; EQUATIONS;
D O I
10.1016/j.jde.2011.07.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study strong solutions of the simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows in a domain Omega subset of R-3. We first prove the local existence of a unique strong solution provided that the initial data rho(0), u(0), d(0) are sufficiently regular and satisfy a natural compatibility condition. The initial density function rho(0) may vanish on an open subset (i.e., an initial vacuum may exist). We then prove a criterion for possible breakdown of such a local strong solution at finite time in terms of blow up of the quantities parallel to rho parallel to(Lt infinity Lx infinity) and parallel to del d parallel to(Lt3Lx infinity) (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2222 / 2265
页数:44
相关论文
共 41 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]  
BOURGUIGNON J. P., 1931, J. Funct. Anal., V15, P341, DOI [10.1016/0022-1236(74)90027-5, DOI 10.1016/0022-1236(74)90027-5]
[3]   Unique solvability of the initial boundary value problems for compressible viscous fluids [J].
Cho, Y ;
Choe, HJ ;
Kim, H .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02) :243-275
[4]   Strong solutions of the Navier-Stokes equations for isentropic compressible fluids [J].
Choe, HJ ;
Kim, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 190 (02) :504-523
[5]  
De Gennes P. G., 1974, The Physics of Liquid Crystals
[6]   WEAK SOLUTION TO COMPRESSIBLE HYDRODYNAMIC FLOW OF LIQUID CRYSTALS IN DIMENSION ONE [J].
Ding, Shijin ;
Wang, Changyou ;
Wen, Huanyao .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (02) :357-371
[7]  
ERICKSEN JL, 1962, ARCH RATION MECH AN, V9, P371
[8]  
Feireisl E., 2004, Dynamics of Viscous Compressible Fluids (Oxford Lecture Series in Mathematics and Its Applications vol 26)
[9]   EXISTENCE AND PARTIAL REGULARITY OF STATIC LIQUID-CRYSTAL CONFIGURATIONS [J].
HARDT, R ;
KINDERLEHRER, D ;
LIN, FH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (04) :547-570
[10]   Global existence of solutions of the simplified Ericksen-Leslie system in dimension two [J].
Hong, Min-Chun .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 40 (1-2) :15-36