A 3D Iris Scanner From a Single Image Using Convolutional Neural Networks

被引:14
|
作者
Benalcazar, Daniel P. [1 ,3 ]
Zambrano, Jorge E. [1 ,3 ]
Bastias, Diego [1 ,3 ]
Perez, Claudio A. [1 ,3 ]
Bowyer, Kevin W. [2 ]
机构
[1] Univ Chile, Dept Elect Engn, Santiago 8370451, Chile
[2] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[3] Univ Chile, Adv Min Technol Ctr, Santiago 8370451, Chile
关键词
Three-dimensional displays; Iris recognition; Solid modeling; Iris; Estimation; Image reconstruction; Two dimensional displays; 3D iris reconstruction; 3D iris scanner; biometrics; iris recognition; depth estimation; RECOGNITION; MODEL;
D O I
10.1109/ACCESS.2020.2996563
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A 3D model of the human iris provides an additional degree of freedom in iris recognition, which could help identify people in larger databases, even when only a piece of the iris is available. Previously, we reported developing a 3D iris scanner that uses 2D images of the iris from multiple perspectives to reconstruct a 3D model of the iris. This paper focuses on the development of a 3D iris scanner from a single image by means of a Convolutional Neural Network (CNN). The method is based on a depth-estimation CNN for the 3D iris model. A dataset of 26,520 real iris images from 120 subjects, and a dataset of 72,000 synthetic iris images with their aligned depthmaps were created. With these datasets, we trained and compared the depth estimation capabilities of available CNN architectures. We analyzed the performance of our method to estimate the iris depth in multiple ways: using real step pyramid printed 3D models, comparing the results to those of a test set of synthetic images, comparing the results to those of the OCT scans from both eyes of one subject, and generating the 3D rubber sheet from the 3D iris model proving the correspondence with the resulting 2D rubber sheet and binary codes. On a preliminary test the proposed 3D rubber sheet model increased iris recognition performance by 48% with respect to the standard 2D iris code. Other contributions include assessing the scanning resolution, reducing the acquisition and processing time to produce the 3D iris model, and reducing the complexity of the image acquisition system.
引用
收藏
页码:98584 / 98599
页数:16
相关论文
共 50 条
  • [21] Robust Sound Source Tracking Using SRP-PHAT and 3D Convolutional Neural Networks
    Diaz-Guerra, David
    Miguel, Antonio
    Beltran, Jose R.
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 : 300 - 311
  • [22] Dilated 3D Convolutional Neural Networks for Brain MRI Data Classification
    Wang, Zijian
    Sun, Yaoru
    Shen, Qianzi
    Cao, Lei
    IEEE ACCESS, 2019, 7 : 134388 - 134398
  • [23] 3D Face Reconstruction Based on a Single Image: A Review
    Diao, Haojie
    Jiang, Xingguo
    Fan, Yang
    Li, Ming
    Wu, Hongcheng
    IEEE ACCESS, 2024, 12 : 59450 - 59473
  • [24] 3D Convolutional Neural Networks for Facial Expression Classification
    Sun, Wenyun
    Zhao, Haitao
    Jin, Zhong
    COMPUTER VISION - ACCV 2016 WORKSHOPS, PT I, 2017, 10116 : 528 - 543
  • [25] Mandibular Canal Segmentation From CBCT Image Using 3D Convolutional Neural Network With scSE Attention
    Du, Gang
    Tian, Xinyu
    Song, Yixu
    IEEE ACCESS, 2022, 10 : 111272 - 111283
  • [26] Robust Iris Presentation Attack Detection Fusing 2D and 3D Information
    Fang, Zhaoyuan
    Czajka, Adam
    Bowyer, Kevin W.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 510 - 520
  • [27] Iris Recognition Using Convolutional Neural Network
    Zhuang, Yuan
    Chuah, Joon Huang
    Chow, Chee Onn
    Lim, Marcus Guozong
    2020 IEEE 10TH INTERNATIONAL CONFERENCE ON SYSTEM ENGINEERING AND TECHNOLOGY (ICSET), 2020, : 134 - 138
  • [28] Identifying persons from iris images using neural networks for image segmentation and feature extraction
    Ganeeva, Yu Kh
    Myasnikov, E., V
    COMPUTER OPTICS, 2022, 46 (02) : 308 - +
  • [29] 3D Model-Based Gaze Tracking Via Iris Features With a Single Camera and a Single Light Source
    Liu, Jiahui
    Chi, Jiannan
    Hu, Wenxue
    Wang, Zhiliang
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2021, 51 (02) : 75 - 86
  • [30] Text-Independent Speaker Verification Using Lightweight 3D Convolutional Neural Networks
    Chen, Jyun-Yan
    Jeng, Jin-Tsong
    2024 INTERNATIONAL CONFERENCE ON SYSTEM SCIENCE AND ENGINEERING, ICSSE 2024, 2024,