Interconnecting strategy of bridging multilayer networks to maximize synchronizability

被引:4
作者
Dai, Yang [1 ,2 ]
Zhang, Jianhua [3 ]
Wang, Wei [4 ]
机构
[1] Southwest Jiaotong Univ, Sch Econ & Management, Chengdu 610031, Sichuan, Peoples R China
[2] Serv Sci & Innovat Key Lab Sichuan Prov, Chengdu 610031, Sichuan, Peoples R China
[3] Jiangsu Normal Univ, Sch Elect Engn & Automat, Xuzhou 221116, Jiangsu, Peoples R China
[4] Sichuan Univ, Cybersecur Res Inst, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
INTERACTING SPREADING DYNAMICS; COMPLEX; BREAKDOWN; INTERNET; PHYSICS;
D O I
10.1209/0295-5075/125/18003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Since many real-world system are described as multilayer networks, researchers focus their efforts on the subject of synchronization of multilayer networks. In this paper, we propose an strategy of bridging multilayer networks with p-links to get the maximum synchronizability. Based on the matrix perturbation theory, the problem of placing p-links between any two networks is transformed into p-times placing one-link structure perturbation to the original Laplacian matrix problem. Instead of exhaustive searching in the infinite space, we break the complicated problem into p sub-problem. In each sub-problem, we just need to sort two vectors and choose the maximum elements as the interconnecting node pair. This method significantly reduces the computing burden. To verify the effectiveness of our strategy, we perform some simulations to compare our method with other strategies. The results show that our strategies outperforms in most cases. Copyright (C) EPLA, 2019
引用
收藏
页数:7
相关论文
共 56 条
[1]   Synchronization of Interconnected Networks: The Role of Connector Nodes [J].
Aguirre, J. ;
Sevilla-Escoboza, R. ;
Gutierrez, R. ;
Papo, D. ;
Buldu, J. M. .
PHYSICAL REVIEW LETTERS, 2014, 112 (24)
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]  
[Anonymous], 2016, EPL, DOI DOI 10.1209/0295-5075/113/28005
[4]   Synchronization reveals topological scales in complex networks [J].
Arenas, A ;
Díaz-Guilera, A ;
Pérez-Vicente, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[5]   PHASE-LOCKING IN A NETWORK OF NEURAL OSCILLATORS [J].
ARENAS, A ;
VICENTE, CJP .
EUROPHYSICS LETTERS, 1994, 26 (02) :79-83
[6]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[7]  
Barabasi A-L, 2016, NETWORK SCI
[8]   The control of chaos: theory and applications [J].
Boccaletti, S ;
Grebogi, C ;
Lai, YC ;
Mancini, H ;
Maza, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (03) :103-197
[9]   Explosive transitions in complex networks' structure and dynamics: Percolation and synchronization [J].
Boccaletti, S. ;
Almendral, J. A. ;
Guan, S. ;
Leyva, I. ;
Liu, Z. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zou, Y. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 660 :1-94
[10]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122