The Characterizations of WG Matrix and Its Generalized Cayley-Hamilton Theorem

被引:9
作者
Liu, Na [1 ]
Wang, Hongxing [1 ]
机构
[1] Guangxi Univ Nationalities, Key Lab Complex Syst & Intelligent Comp, Guangxi Higher Sch, Sch Math & Phys, Nanning 530006, Peoples R China
关键词
WEAK GROUP INVERSE; SYSTEMS;
D O I
10.1155/2021/4952943
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the core-EP decomposition, we use the WG inverse, Drazin inverse, and other inverses to give some new characterizations of the WG matrix. Furthermore, we generalize the Cayley-Hamilton theorem for special matrices including the WG matrix. Finally, we give examples to verify these results.
引用
收藏
页数:10
相关论文
共 28 条
[11]   Cayley-Hamilton theorem for Drazin inverse matrix and standard inverse matrices [J].
Kaczorek, T. .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2016, 64 (04) :793-797
[12]  
Kaczorek T, 2011, LECT NOTES CONTR INF, V411, P1, DOI 10.1007/978-3-642-20502-6
[13]  
Kaczorek T, 2005, INT J AP MAT COM-POL, V15, P231
[14]   On a new generalized inverse for matrices of an arbitrary index [J].
Malik, Saroj B. ;
Thome, Nestor .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 :575-580
[15]   On a new generalized inverse of matrices [J].
Mehdipour, Mahboobeh ;
Salemi, Abbas .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (05) :1046-1053
[16]  
Mitra S.K., 2010, MATRIX PARTIAL ORDER
[17]   Representations for the weak group inverse [J].
Mosic, Dijana ;
Stanimirovic, Predrag S. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 397
[18]   Weighted weak group inverse for Hilbert space operators [J].
Mosic, Dijana ;
Zhang, Daochang .
FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (04) :709-726
[19]   Core-EP inverse [J].
Prasad, K. Manjunatha ;
Mohana, K. S. .
LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (06) :792-802
[20]  
Wang G., 2018, GEN INVERSES THEORY