Unsupervised Domain Adaptation using Feature-Whitening and Consensus Loss

被引:101
|
作者
Roy, Subhankar [1 ,2 ]
Siarohin, Aliaksandr [1 ]
Sangineto, Enver [1 ]
Bulo, Samuel Rota [3 ]
Sebe, Nicu [1 ]
Ricci, Elisa [1 ,2 ]
机构
[1] Univ Trento, DISI, Trento, TN, Italy
[2] Fdn Bruno Kessler, Trento, Italy
[3] Mapillary Res, Malmo, Sweden
基金
欧洲研究理事会;
关键词
D O I
10.1109/CVPR.2019.00970
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A classifier trained on a dataset seldom works on other datasets obtained under different conditions due to domain shift. This problem is commonly addressed by domain adaptation methods. In this work we introduce a novel deep learning framework which unifies different paradigms in unsupervised domain adaptation. Specifically, we propose domain alignment layers which implement feature whitening for the purpose of matching source and target feature distributions. Additionally, we leverage the unlabeled target data by proposing the Min-Entropy Consensus loss, which regularizes training while avoiding the adoption of many user-defined hyper-parameters. We report results on publicly available datasets, considering both digit classification and object recognition tasks. We show that, in most of our experiments, our approach improves upon previous methods, setting new state-of-the-art performances.
引用
收藏
页码:9463 / 9472
页数:10
相关论文
共 50 条
  • [1] Unsupervised Domain Adaptation Using Full-Feature Whitening and Colouring
    Roy, Subhankar
    Siarohin, Aliaksandr
    Sebe, Nicu
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 : 225 - 236
  • [2] Boosting Deepfake Feature Extractors Using Unsupervised Domain Adaptation
    Li, Jicheng
    Hu, Yongjian
    Liu, Beibei
    Gong, Zhaolong
    Kang, Xiangui
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2010 - 2014
  • [3] Feature Selection for Unsupervised Domain Adaptation Using Optimal Transport
    Gautheron, Leo
    Redko, Ievgen
    Lartizien, Carole
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT II, 2019, 11052 : 759 - 776
  • [4] Transferable Feature Selection for Unsupervised Domain Adaptation
    Yan, Yuguang
    Wu, Hanrui
    Ye, Yuzhong
    Bi, Chaoyang
    Lu, Min
    Liu, Dapeng
    Wu, Qingyao
    Ng, Michael K.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5536 - 5551
  • [5] Adversarial Feature Augmentation for Unsupervised Domain Adaptation
    Volpi, Riccardo
    Morerio, Pietro
    Savarese, Silvio
    Murino, Vittorio
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5495 - 5504
  • [6] Progressive Feature Alignment for Unsupervised Domain Adaptation
    Chen, Chaoqi
    Xie, Weiping
    Huang, Wenbing
    Rong, Yu
    Ding, Xinghao
    Huang, Yue
    Xu, Tingyang
    Huang, Junzhou
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 627 - 636
  • [7] Informative Feature Disentanglement for Unsupervised Domain Adaptation
    Deng, Wanxia
    Zhao, Lingjun
    Liao, Qing
    Guo, Deke
    Kuang, Gangyao
    Hu, Dewen
    Pietikainen, Matti
    Liu, Li
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2407 - 2421
  • [8] Adaptive Feature Swapping for Unsupervised Domain Adaptation
    Zhuo, Junbao
    Zhao, Xingyu
    Cui, Shuhao
    Huang, Qingming
    Wang, Shuhui
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 7017 - +
  • [9] Intrinsic feature extraction for unsupervised domain adaptation
    Cao, Xinzhi
    Guo, Yinsai
    Yang, Wenbin
    Luo, Xiangfeng
    Xie, Shaorong
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2023, 19 (5/6) : 173 - 189
  • [10] Discriminable feature enhancement for unsupervised domain adaptation
    Li, Yanan
    Liu, Yifei
    Zheng, Dingrun
    Huang, Yuhan
    Tang, Yuling
    IMAGE AND VISION COMPUTING, 2023, 137