Performing uncertainty analysis of a nonlinear Point-Kinetics/Lumped Parameters problem using Polynomial Chaos techniques

被引:21
作者
Gilli, L. [1 ]
Lathouwers, D. [1 ]
Kloosterman, J. L. [1 ]
van der Hagen, T. H. J. J. [1 ]
机构
[1] Delft Univ Technol, Dept Phys Nucl Reactors, NL-2629 JB Delft, Netherlands
关键词
Uncertainty analysis; Spectral methods; Polynomial Chaos Expansion; Nonlinear time-dependent problems; QUANTIFICATION;
D O I
10.1016/j.anucene.2011.09.016
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Uncertainty analysis methodologies represent an important tool in the field of reactor physics with applications which span from the design phase to the safety analysis, as a support to "best estimate" models. A major source of uncertainty in reactor simulations is the input data set of the problem which is propagated, throughout the model, to the final simulation output. In this paper we perform such a propagation for a nonlinear point-kinetic model coupled to a lumped parameters system using a spectral technique, based on the Polynomial Chaos Expansion (PCE). We present two different ways to implement this technique, together with an overview of standard methods, and we apply them to a positive reactivity insertion transient. We show that for low-dimensional coupled problems PCE methods achieve the precision of Monte Carlo approaches at a significantly reduced computational cost. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 2009, THESIS U NEW MEXICO
[2]  
Cacuci D, 2003, Sensitivity and Uncertainty Analysis: Theory, VI
[3]  
Duderstadt J.J., 1991, Nuclear Reactor Analysis
[4]   A probabilistic study of the influence of parameter uncertainty on solutions of the neutron transport equation [J].
Eaton, Matthew ;
Williams, M. M. R. .
PROGRESS IN NUCLEAR ENERGY, 2010, 52 (06) :580-588
[5]   Time-dependent generalized polynomial chaos [J].
Gerritsma, Marc ;
van der Steen, Jan-Bart ;
Vos, Peter ;
Karniadakis, George .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (22) :8333-8363
[6]  
Ghanem R., 1991, STOCHASTIC FINITE EL, VVolume 1, P1, DOI [10.1007/978-1-4612-3094-6, DOI 10.1007/978-1-4612-3094-6]
[7]   Spectral techniques for stochastic finite elements [J].
Ghanem, RG ;
Spanos, PD .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 1997, 4 (01) :63-100
[8]   A probabilistic study of the effect of retardation factor uncertainty using a compartment model for radionuclide release into the biosphere [J].
Hagues, A. W. ;
Williams, M. M. R. ;
Eaton, M. D. .
ANNALS OF NUCLEAR ENERGY, 2010, 37 (09) :1197-1207
[9]  
HELTON JC, 2002, SAND20010417 SAND NA
[10]  
IAEA, 1994, IAEATECDOC731